datafusion_functions/core/
least.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::core::greatest_least_utils::GreatestLeastOperator;
use arrow::array::{make_comparator, Array, BooleanArray};
use arrow::compute::kernels::cmp;
use arrow::compute::SortOptions;
use arrow::datatypes::DataType;
use arrow_buffer::BooleanBuffer;
use datafusion_common::{internal_err, Result, ScalarValue};
use datafusion_doc::Documentation;
use datafusion_expr::ColumnarValue;
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility};
use datafusion_macros::user_doc;
use std::any::Any;

const SORT_OPTIONS: SortOptions = SortOptions {
    // Having the smallest result first
    descending: false,

    // NULL will be greater than any other value
    nulls_first: false,
};

#[user_doc(
    doc_section(label = "Conditional Functions"),
    description = "Returns the smallest value in a list of expressions. Returns _null_ if all expressions are _null_.",
    syntax_example = "least(expression1[, ..., expression_n])",
    sql_example = r#"```sql
> select least(4, 7, 5);
+---------------------------+
| least(4,7,5)              |
+---------------------------+
| 4                         |
+---------------------------+
```"#,
    argument(
        name = "expression1, expression_n",
        description = "Expressions to compare and return the smallest value. Can be a constant, column, or function, and any combination of arithmetic operators. Pass as many expression arguments as necessary."
    )
)]
#[derive(Debug)]
pub struct LeastFunc {
    signature: Signature,
}

impl Default for LeastFunc {
    fn default() -> Self {
        LeastFunc::new()
    }
}

impl LeastFunc {
    pub fn new() -> Self {
        Self {
            signature: Signature::user_defined(Volatility::Immutable),
        }
    }
}

impl GreatestLeastOperator for LeastFunc {
    const NAME: &'static str = "least";

    fn keep_scalar<'a>(
        lhs: &'a ScalarValue,
        rhs: &'a ScalarValue,
    ) -> Result<&'a ScalarValue> {
        // Manual checking for nulls as:
        // 1. If we're going to use <=, in Rust None is smaller than Some(T), which we don't want
        // 2. And we can't use make_comparator as it has no natural order (Arrow error)
        if lhs.is_null() {
            return Ok(rhs);
        }

        if rhs.is_null() {
            return Ok(lhs);
        }

        if !lhs.data_type().is_nested() {
            return if lhs <= rhs { Ok(lhs) } else { Ok(rhs) };
        }

        // Not using <= as in Rust None is smaller than Some(T)

        // If complex type we can't compare directly as we want null values to be larger
        let cmp = make_comparator(
            lhs.to_array()?.as_ref(),
            rhs.to_array()?.as_ref(),
            SORT_OPTIONS,
        )?;

        if cmp(0, 0).is_le() {
            Ok(lhs)
        } else {
            Ok(rhs)
        }
    }

    /// Return boolean array where `arr[i] = lhs[i] <= rhs[i]` for all i, where `arr` is the result array
    /// Nulls are always considered larger than any other value
    fn get_indexes_to_keep(lhs: &dyn Array, rhs: &dyn Array) -> Result<BooleanArray> {
        // Fast path:
        // If both arrays are not nested, have the same length and no nulls, we can use the faster vectorized kernel
        // - If both arrays are not nested: Nested types, such as lists, are not supported as the null semantics are not well-defined.
        // - both array does not have any nulls: cmp::lt_eq will return null if any of the input is null while we want to return false in that case
        if !lhs.data_type().is_nested()
            && lhs.logical_null_count() == 0
            && rhs.logical_null_count() == 0
        {
            return cmp::lt_eq(&lhs, &rhs).map_err(|e| e.into());
        }

        let cmp = make_comparator(lhs, rhs, SORT_OPTIONS)?;

        if lhs.len() != rhs.len() {
            return internal_err!(
                "All arrays should have the same length for least comparison"
            );
        }

        let values = BooleanBuffer::collect_bool(lhs.len(), |i| cmp(i, i).is_le());

        // No nulls as we only want to keep the values that are smaller, its either true or false
        Ok(BooleanArray::new(values, None))
    }
}

impl ScalarUDFImpl for LeastFunc {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        "least"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        Ok(arg_types[0].clone())
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        super::greatest_least_utils::execute_conditional::<Self>(args)
    }

    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
        let coerced_type =
            super::greatest_least_utils::find_coerced_type::<Self>(arg_types)?;

        Ok(vec![coerced_type; arg_types.len()])
    }

    fn documentation(&self) -> Option<&Documentation> {
        self.doc()
    }
}

#[cfg(test)]
mod test {
    use crate::core::least::LeastFunc;
    use arrow::datatypes::DataType;
    use datafusion_expr::ScalarUDFImpl;

    #[test]
    fn test_least_return_types_without_common_supertype_in_arg_type() {
        let least = LeastFunc::new();
        let return_type = least
            .coerce_types(&[DataType::Decimal128(10, 3), DataType::Decimal128(10, 4)])
            .unwrap();
        assert_eq!(
            return_type,
            vec![DataType::Decimal128(11, 4), DataType::Decimal128(11, 4)]
        );
    }
}