datafusion_functions/datetime/common.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::sync::Arc;
use arrow::array::{
Array, ArrowPrimitiveType, AsArray, GenericStringArray, PrimitiveArray,
StringViewArray,
};
use arrow::compute::kernels::cast_utils::string_to_timestamp_nanos;
use arrow::datatypes::DataType;
use chrono::format::{parse, Parsed, StrftimeItems};
use chrono::LocalResult::Single;
use chrono::{DateTime, TimeZone, Utc};
use crate::strings::StringArrayType;
use datafusion_common::cast::as_generic_string_array;
use datafusion_common::{
exec_err, unwrap_or_internal_err, DataFusionError, Result, ScalarType, ScalarValue,
};
use datafusion_expr::ColumnarValue;
/// Error message if nanosecond conversion request beyond supported interval
const ERR_NANOSECONDS_NOT_SUPPORTED: &str = "The dates that can be represented as nanoseconds have to be between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804";
/// Calls string_to_timestamp_nanos and converts the error type
pub(crate) fn string_to_timestamp_nanos_shim(s: &str) -> Result<i64> {
string_to_timestamp_nanos(s).map_err(|e| e.into())
}
/// Checks that all the arguments from the second are of type [Utf8], [LargeUtf8] or [Utf8View]
///
/// [Utf8]: DataType::Utf8
/// [LargeUtf8]: DataType::LargeUtf8
/// [Utf8View]: DataType::Utf8View
pub(crate) fn validate_data_types(args: &[ColumnarValue], name: &str) -> Result<()> {
for (idx, a) in args.iter().skip(1).enumerate() {
match a.data_type() {
DataType::Utf8View | DataType::LargeUtf8 | DataType::Utf8 => {
// all good
}
_ => {
return exec_err!(
"{name} function unsupported data type at index {}: {}",
idx + 1,
a.data_type()
);
}
}
}
Ok(())
}
/// Accepts a string and parses it using the [`chrono::format::strftime`] specifiers
/// relative to the provided `timezone`
///
/// [IANA timezones] are only supported if the `arrow-array/chrono-tz` feature is enabled
///
/// * `2023-01-01 040506 America/Los_Angeles`
///
/// If a timestamp is ambiguous, for example as a result of daylight-savings time, an error
/// will be returned
///
/// [`chrono::format::strftime`]: https://docs.rs/chrono/latest/chrono/format/strftime/index.html
/// [IANA timezones]: https://www.iana.org/time-zones
pub(crate) fn string_to_datetime_formatted<T: TimeZone>(
timezone: &T,
s: &str,
format: &str,
) -> Result<DateTime<T>, DataFusionError> {
let err = |err_ctx: &str| {
DataFusionError::Execution(format!(
"Error parsing timestamp from '{s}' using format '{format}': {err_ctx}"
))
};
let mut parsed = Parsed::new();
parse(&mut parsed, s, StrftimeItems::new(format)).map_err(|e| err(&e.to_string()))?;
// attempt to parse the string assuming it has a timezone
let dt = parsed.to_datetime();
if let Err(e) = &dt {
// no timezone or other failure, try without a timezone
let ndt = parsed
.to_naive_datetime_with_offset(0)
.or_else(|_| parsed.to_naive_date().map(|nd| nd.into()));
if let Err(e) = &ndt {
return Err(err(&e.to_string()));
}
if let Single(e) = &timezone.from_local_datetime(&ndt.unwrap()) {
Ok(e.to_owned())
} else {
Err(err(&e.to_string()))
}
} else {
Ok(dt.unwrap().with_timezone(timezone))
}
}
/// Accepts a string with a `chrono` format and converts it to a
/// nanosecond precision timestamp.
///
/// See [`chrono::format::strftime`] for the full set of supported formats.
///
/// Implements the `to_timestamp` function to convert a string to a
/// timestamp, following the model of spark SQL’s to_`timestamp`.
///
/// Internally, this function uses the `chrono` library for the
/// datetime parsing
///
/// ## Timestamp Precision
///
/// Function uses the maximum precision timestamps supported by
/// Arrow (nanoseconds stored as a 64-bit integer) timestamps. This
/// means the range of dates that timestamps can represent is ~1677 AD
/// to 2262 AM
///
/// ## Timezone / Offset Handling
///
/// Numerical values of timestamps are stored compared to offset UTC.
///
/// Any timestamp in the formatting string is handled according to the rules
/// defined by `chrono`.
///
/// [`chrono::format::strftime`]: https://docs.rs/chrono/latest/chrono/format/strftime/index.html
///
#[inline]
pub(crate) fn string_to_timestamp_nanos_formatted(
s: &str,
format: &str,
) -> Result<i64, DataFusionError> {
string_to_datetime_formatted(&Utc, s, format)?
.naive_utc()
.and_utc()
.timestamp_nanos_opt()
.ok_or_else(|| {
DataFusionError::Execution(ERR_NANOSECONDS_NOT_SUPPORTED.to_string())
})
}
/// Accepts a string with a `chrono` format and converts it to a
/// millisecond precision timestamp.
///
/// See [`chrono::format::strftime`] for the full set of supported formats.
///
/// Internally, this function uses the `chrono` library for the
/// datetime parsing
///
/// ## Timezone / Offset Handling
///
/// Numerical values of timestamps are stored compared to offset UTC.
///
/// Any timestamp in the formatting string is handled according to the rules
/// defined by `chrono`.
///
/// [`chrono::format::strftime`]: https://docs.rs/chrono/latest/chrono/format/strftime/index.html
///
#[inline]
pub(crate) fn string_to_timestamp_millis_formatted(s: &str, format: &str) -> Result<i64> {
Ok(string_to_datetime_formatted(&Utc, s, format)?
.naive_utc()
.and_utc()
.timestamp_millis())
}
pub(crate) fn handle<O, F, S>(
args: &[ColumnarValue],
op: F,
name: &str,
) -> Result<ColumnarValue>
where
O: ArrowPrimitiveType,
S: ScalarType<O::Native>,
F: Fn(&str) -> Result<O::Native>,
{
match &args[0] {
ColumnarValue::Array(a) => match a.data_type() {
DataType::Utf8View => Ok(ColumnarValue::Array(Arc::new(
unary_string_to_primitive_function::<&StringViewArray, O, _>(
a.as_ref().as_string_view(),
op,
)?,
))),
DataType::LargeUtf8 => Ok(ColumnarValue::Array(Arc::new(
unary_string_to_primitive_function::<&GenericStringArray<i64>, O, _>(
a.as_ref().as_string::<i64>(),
op,
)?,
))),
DataType::Utf8 => Ok(ColumnarValue::Array(Arc::new(
unary_string_to_primitive_function::<&GenericStringArray<i32>, O, _>(
a.as_ref().as_string::<i32>(),
op,
)?,
))),
other => exec_err!("Unsupported data type {other:?} for function {name}"),
},
ColumnarValue::Scalar(scalar) => match scalar {
ScalarValue::Utf8View(a)
| ScalarValue::LargeUtf8(a)
| ScalarValue::Utf8(a) => {
let result = a.as_ref().map(|x| op(x)).transpose()?;
Ok(ColumnarValue::Scalar(S::scalar(result)))
}
other => exec_err!("Unsupported data type {other:?} for function {name}"),
},
}
}
// Given a function that maps a `&str`, `&str` to an arrow native type,
// returns a `ColumnarValue` where the function is applied to either a `ArrayRef` or `ScalarValue`
// depending on the `args`'s variant.
pub(crate) fn handle_multiple<O, F, S, M>(
args: &[ColumnarValue],
op: F,
op2: M,
name: &str,
) -> Result<ColumnarValue>
where
O: ArrowPrimitiveType,
S: ScalarType<O::Native>,
F: Fn(&str, &str) -> Result<O::Native>,
M: Fn(O::Native) -> O::Native,
{
match &args[0] {
ColumnarValue::Array(a) => match a.data_type() {
DataType::Utf8View | DataType::LargeUtf8 | DataType::Utf8 => {
// validate the column types
for (pos, arg) in args.iter().enumerate() {
match arg {
ColumnarValue::Array(arg) => match arg.data_type() {
DataType::Utf8View | DataType::LargeUtf8 | DataType::Utf8 => {
// all good
}
other => return exec_err!("Unsupported data type {other:?} for function {name}, arg # {pos}"),
},
ColumnarValue::Scalar(arg) => {
match arg.data_type() {
DataType::Utf8View| DataType::LargeUtf8 | DataType::Utf8 => {
// all good
}
other => return exec_err!("Unsupported data type {other:?} for function {name}, arg # {pos}"),
}
}
}
}
Ok(ColumnarValue::Array(Arc::new(
strings_to_primitive_function::<O, _, _>(args, op, op2, name)?,
)))
}
other => {
exec_err!("Unsupported data type {other:?} for function {name}")
}
},
// if the first argument is a scalar utf8 all arguments are expected to be scalar utf8
ColumnarValue::Scalar(scalar) => match scalar {
ScalarValue::Utf8View(a)
| ScalarValue::LargeUtf8(a)
| ScalarValue::Utf8(a) => {
let a = a.as_ref();
// ASK: Why do we trust `a` to be non-null at this point?
let a = unwrap_or_internal_err!(a);
let mut ret = None;
for (pos, v) in args.iter().enumerate().skip(1) {
let ColumnarValue::Scalar(
ScalarValue::Utf8View(x)
| ScalarValue::LargeUtf8(x)
| ScalarValue::Utf8(x),
) = v
else {
return exec_err!("Unsupported data type {v:?} for function {name}, arg # {pos}");
};
if let Some(s) = x {
match op(a.as_str(), s.as_str()) {
Ok(r) => {
ret = Some(Ok(ColumnarValue::Scalar(S::scalar(Some(
op2(r),
)))));
break;
}
Err(e) => ret = Some(Err(e)),
}
}
}
unwrap_or_internal_err!(ret)
}
other => {
exec_err!("Unsupported data type {other:?} for function {name}")
}
},
}
}
/// given a function `op` that maps `&str`, `&str` to the first successful Result
/// of an arrow native type, returns a `PrimitiveArray` after the application of the
/// function to `args` and the subsequence application of the `op2` function to any
/// successful result. This function calls the `op` function with the first and second
/// argument and if not successful continues with first and third, first and fourth,
/// etc until the result was successful or no more arguments are present.
/// # Errors
/// This function errors iff:
/// * the number of arguments is not > 1 or
/// * the function `op` errors for all input
pub(crate) fn strings_to_primitive_function<O, F, F2>(
args: &[ColumnarValue],
op: F,
op2: F2,
name: &str,
) -> Result<PrimitiveArray<O>>
where
O: ArrowPrimitiveType,
F: Fn(&str, &str) -> Result<O::Native>,
F2: Fn(O::Native) -> O::Native,
{
if args.len() < 2 {
return exec_err!(
"{:?} args were supplied but {} takes 2 or more arguments",
args.len(),
name
);
}
match &args[0] {
ColumnarValue::Array(a) => match a.data_type() {
DataType::Utf8View => {
let string_array = a.as_string_view();
handle_array_op::<O, &StringViewArray, F, F2>(
&string_array,
&args[1..],
op,
op2,
)
}
DataType::LargeUtf8 => {
let string_array = as_generic_string_array::<i64>(&a)?;
handle_array_op::<O, &GenericStringArray<i64>, F, F2>(
&string_array,
&args[1..],
op,
op2,
)
}
DataType::Utf8 => {
let string_array = as_generic_string_array::<i32>(&a)?;
handle_array_op::<O, &GenericStringArray<i32>, F, F2>(
&string_array,
&args[1..],
op,
op2,
)
}
other => exec_err!(
"Unsupported data type {other:?} for function substr,\
expected Utf8View, Utf8 or LargeUtf8."
),
},
other => exec_err!(
"Received {} data type, expected only array",
other.data_type()
),
}
}
fn handle_array_op<'a, O, V, F, F2>(
first: &V,
args: &[ColumnarValue],
op: F,
op2: F2,
) -> Result<PrimitiveArray<O>>
where
V: StringArrayType<'a>,
O: ArrowPrimitiveType,
F: Fn(&str, &str) -> Result<O::Native>,
F2: Fn(O::Native) -> O::Native,
{
first
.iter()
.enumerate()
.map(|(pos, x)| {
let mut val = None;
if let Some(x) = x {
for arg in args {
let v = match arg {
ColumnarValue::Array(a) => match a.data_type() {
DataType::Utf8View => Ok(a.as_string_view().value(pos)),
DataType::LargeUtf8 => Ok(a.as_string::<i64>().value(pos)),
DataType::Utf8 => Ok(a.as_string::<i32>().value(pos)),
other => exec_err!("Unexpected type encountered '{other}'"),
},
ColumnarValue::Scalar(s) => match s {
ScalarValue::Utf8View(a)
| ScalarValue::LargeUtf8(a)
| ScalarValue::Utf8(a) => {
if let Some(v) = a {
Ok(v.as_str())
} else {
continue;
}
}
other => {
exec_err!("Unexpected scalar type encountered '{other}'")
}
},
}?;
let r = op(x, v);
if r.is_ok() {
val = Some(Ok(op2(r.unwrap())));
break;
} else {
val = Some(r);
}
}
};
val.transpose()
})
.collect()
}
/// given a function `op` that maps a `&str` to a Result of an arrow native type,
/// returns a `PrimitiveArray` after the application
/// of the function to `args[0]`.
/// # Errors
/// This function errors iff:
/// * the number of arguments is not 1 or
/// * the function `op` errors
fn unary_string_to_primitive_function<'a, StringArrType, O, F>(
array: StringArrType,
op: F,
) -> Result<PrimitiveArray<O>>
where
StringArrType: StringArrayType<'a>,
O: ArrowPrimitiveType,
F: Fn(&'a str) -> Result<O::Native>,
{
// first map is the iterator, second is for the `Option<_>`
array.iter().map(|x| x.map(&op).transpose()).collect()
}