datafusion_functions/math/
nanvl.rsuse std::any::Any;
use std::sync::{Arc, OnceLock};
use crate::utils::make_scalar_function;
use arrow::array::{ArrayRef, AsArray, Float32Array, Float64Array};
use arrow::datatypes::DataType::{Float32, Float64};
use arrow::datatypes::{DataType, Float32Type, Float64Type};
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_expr::scalar_doc_sections::DOC_SECTION_MATH;
use datafusion_expr::TypeSignature::Exact;
use datafusion_expr::{
ColumnarValue, Documentation, ScalarUDFImpl, Signature, Volatility,
};
#[derive(Debug)]
pub struct NanvlFunc {
signature: Signature,
}
impl Default for NanvlFunc {
fn default() -> Self {
NanvlFunc::new()
}
}
impl NanvlFunc {
pub fn new() -> Self {
use DataType::*;
Self {
signature: Signature::one_of(
vec![Exact(vec![Float32, Float32]), Exact(vec![Float64, Float64])],
Volatility::Immutable,
),
}
}
}
impl ScalarUDFImpl for NanvlFunc {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"nanvl"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
match &arg_types[0] {
Float32 => Ok(Float32),
_ => Ok(Float64),
}
}
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
make_scalar_function(nanvl, vec![])(args)
}
fn documentation(&self) -> Option<&Documentation> {
Some(get_nanvl_doc())
}
}
static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();
fn get_nanvl_doc() -> &'static Documentation {
DOCUMENTATION.get_or_init(|| {
Documentation::builder()
.with_doc_section(DOC_SECTION_MATH)
.with_description(
r#"Returns the first argument if it's not _NaN_.
Returns the second argument otherwise."#,
)
.with_syntax_example("nanvl(expression_x, expression_y)")
.with_argument("expression_x", "Numeric expression to return if it's not _NaN_. Can be a constant, column, or function, and any combination of arithmetic operators.")
.with_argument("expression_y", "Numeric expression to return if the first expression is _NaN_. Can be a constant, column, or function, and any combination of arithmetic operators.")
.build()
.unwrap()
})
}
fn nanvl(args: &[ArrayRef]) -> Result<ArrayRef> {
match args[0].data_type() {
Float64 => {
let compute_nanvl = |x: f64, y: f64| {
if x.is_nan() {
y
} else {
x
}
};
let x = args[0].as_primitive() as &Float64Array;
let y = args[1].as_primitive() as &Float64Array;
arrow::compute::binary::<_, _, _, Float64Type>(x, y, compute_nanvl)
.map(|res| Arc::new(res) as _)
.map_err(DataFusionError::from)
}
Float32 => {
let compute_nanvl = |x: f32, y: f32| {
if x.is_nan() {
y
} else {
x
}
};
let x = args[0].as_primitive() as &Float32Array;
let y = args[1].as_primitive() as &Float32Array;
arrow::compute::binary::<_, _, _, Float32Type>(x, y, compute_nanvl)
.map(|res| Arc::new(res) as _)
.map_err(DataFusionError::from)
}
other => exec_err!("Unsupported data type {other:?} for function nanvl"),
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use crate::math::nanvl::nanvl;
use arrow::array::{ArrayRef, Float32Array, Float64Array};
use datafusion_common::cast::{as_float32_array, as_float64_array};
#[test]
fn test_nanvl_f64() {
let args: Vec<ArrayRef> = vec![
Arc::new(Float64Array::from(vec![1.0, f64::NAN, 3.0, f64::NAN])), Arc::new(Float64Array::from(vec![5.0, 6.0, f64::NAN, f64::NAN])), ];
let result = nanvl(&args).expect("failed to initialize function nanvl");
let floats =
as_float64_array(&result).expect("failed to initialize function nanvl");
assert_eq!(floats.len(), 4);
assert_eq!(floats.value(0), 1.0);
assert_eq!(floats.value(1), 6.0);
assert_eq!(floats.value(2), 3.0);
assert!(floats.value(3).is_nan());
}
#[test]
fn test_nanvl_f32() {
let args: Vec<ArrayRef> = vec![
Arc::new(Float32Array::from(vec![1.0, f32::NAN, 3.0, f32::NAN])), Arc::new(Float32Array::from(vec![5.0, 6.0, f32::NAN, f32::NAN])), ];
let result = nanvl(&args).expect("failed to initialize function nanvl");
let floats =
as_float32_array(&result).expect("failed to initialize function nanvl");
assert_eq!(floats.len(), 4);
assert_eq!(floats.value(0), 1.0);
assert_eq!(floats.value(1), 6.0);
assert_eq!(floats.value(2), 3.0);
assert!(floats.value(3).is_nan());
}
}