datafusion_functions/macros.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
/// macro that exports a list of function names as:
/// 1. individual functions in an `expr_fn` module
/// 2. a single function that returns a list of all functions
///
/// Equivalent to
/// ```text
/// pub mod expr_fn {
/// use super::*;
/// /// Return encode(arg)
/// pub fn encode(args: Vec<Expr>) -> Expr {
/// super::encode().call(args)
/// }
/// ...
/// /// Return a list of all functions in this package
/// pub(crate) fn functions() -> Vec<Arc<ScalarUDF>> {
/// vec![
/// encode(),
/// decode()
/// ]
/// }
/// ```
///
/// Exported functions accept:
/// - `Vec<Expr>` argument (single argument followed by a comma)
/// - Variable number of `Expr` arguments (zero or more arguments, must be without commas)
macro_rules! export_functions {
($(($FUNC:ident, $DOC:expr, $($arg:tt)*)),*) => {
$(
// switch to single-function cases below
export_functions!(single $FUNC, $DOC, $($arg)*);
)*
};
// single vector argument (a single argument followed by a comma)
(single $FUNC:ident, $DOC:expr, $arg:ident,) => {
#[doc = $DOC]
pub fn $FUNC($arg: Vec<datafusion_expr::Expr>) -> datafusion_expr::Expr {
super::$FUNC().call($arg)
}
};
// variadic arguments (zero or more arguments, without commas)
(single $FUNC:ident, $DOC:expr, $($arg:ident)*) => {
#[doc = $DOC]
pub fn $FUNC($($arg: datafusion_expr::Expr),*) -> datafusion_expr::Expr {
super::$FUNC().call(vec![$($arg),*])
}
};
}
/// Creates a singleton `ScalarUDF` of the `$UDF` function named `$GNAME` and a
/// function named `$NAME` which returns that singleton.
///
/// This is used to ensure creating the list of `ScalarUDF` only happens once.
macro_rules! make_udf_function {
($UDF:ty, $GNAME:ident, $NAME:ident) => {
/// Singleton instance of the function
static $GNAME: std::sync::OnceLock<std::sync::Arc<datafusion_expr::ScalarUDF>> =
std::sync::OnceLock::new();
#[doc = "Return a [`ScalarUDF`](datafusion_expr::ScalarUDF) implementation "]
#[doc = stringify!($UDF)]
pub fn $NAME() -> std::sync::Arc<datafusion_expr::ScalarUDF> {
$GNAME
.get_or_init(|| {
std::sync::Arc::new(datafusion_expr::ScalarUDF::new_from_impl(
<$UDF>::new(),
))
})
.clone()
}
};
}
/// Macro creates a sub module if the feature is not enabled
///
/// The rationale for providing stub functions is to help users to configure datafusion
/// properly (so they get an error telling them why a function is not available)
/// instead of getting a cryptic "no function found" message at runtime.
macro_rules! make_stub_package {
($name:ident, $feature:literal) => {
#[cfg(not(feature = $feature))]
#[doc = concat!("Disabled. Enable via feature flag `", $feature, "`")]
pub mod $name {
use datafusion_expr::ScalarUDF;
use log::debug;
use std::sync::Arc;
/// Returns an empty list of functions when the feature is not enabled
pub fn functions() -> Vec<Arc<ScalarUDF>> {
debug!("{} functions disabled", stringify!($name));
vec![]
}
}
};
}
/// Downcast an argument to a specific array type, returning an internal error
/// if the cast fails
///
/// $ARG: ArrayRef
/// $NAME: name of the argument (for error messages)
/// $ARRAY_TYPE: the type of array to cast the argument to
macro_rules! downcast_arg {
($ARG:expr, $NAME:expr, $ARRAY_TYPE:ident) => {{
$ARG.as_any().downcast_ref::<$ARRAY_TYPE>().ok_or_else(|| {
DataFusionError::Internal(format!(
"could not cast {} to {}",
$NAME,
std::any::type_name::<$ARRAY_TYPE>()
))
})?
}};
}
/// Macro to create a unary math UDF.
///
/// A unary math function takes an argument of type Float32 or Float64,
/// applies a unary floating function to the argument, and returns a value of the same type.
///
/// $UDF: the name of the UDF struct that implements `ScalarUDFImpl`
/// $GNAME: a singleton instance of the UDF
/// $NAME: the name of the function
/// $UNARY_FUNC: the unary function to apply to the argument
/// $OUTPUT_ORDERING: the output ordering calculation method of the function
macro_rules! make_math_unary_udf {
($UDF:ident, $GNAME:ident, $NAME:ident, $UNARY_FUNC:ident, $OUTPUT_ORDERING:expr, $EVALUATE_BOUNDS:expr, $GET_DOC:expr) => {
make_udf_function!($NAME::$UDF, $GNAME, $NAME);
mod $NAME {
use std::any::Any;
use std::sync::Arc;
use arrow::array::{ArrayRef, AsArray};
use arrow::datatypes::{DataType, Float32Type, Float64Type};
use datafusion_common::{exec_err, Result};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_expr::{
ColumnarValue, Documentation, ScalarUDFImpl, Signature, Volatility,
};
#[derive(Debug)]
pub struct $UDF {
signature: Signature,
}
impl $UDF {
pub fn new() -> Self {
use DataType::*;
Self {
signature: Signature::uniform(
1,
vec![Float64, Float32],
Volatility::Immutable,
),
}
}
}
impl ScalarUDFImpl for $UDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
stringify!($NAME)
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
let arg_type = &arg_types[0];
match arg_type {
DataType::Float32 => Ok(DataType::Float32),
// For other types (possible values float64/null/int), use Float64
_ => Ok(DataType::Float64),
}
}
fn output_ordering(
&self,
input: &[ExprProperties],
) -> Result<SortProperties> {
$OUTPUT_ORDERING(input)
}
fn evaluate_bounds(&self, inputs: &[&Interval]) -> Result<Interval> {
$EVALUATE_BOUNDS(inputs)
}
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
let args = ColumnarValue::values_to_arrays(args)?;
let arr: ArrayRef = match args[0].data_type() {
DataType::Float64 => Arc::new(
args[0]
.as_primitive::<Float64Type>()
.unary::<_, Float64Type>(|x: f64| f64::$UNARY_FUNC(x)),
) as ArrayRef,
DataType::Float32 => Arc::new(
args[0]
.as_primitive::<Float32Type>()
.unary::<_, Float32Type>(|x: f32| f32::$UNARY_FUNC(x)),
) as ArrayRef,
other => {
return exec_err!(
"Unsupported data type {other:?} for function {}",
self.name()
)
}
};
Ok(ColumnarValue::Array(arr))
}
fn documentation(&self) -> Option<&Documentation> {
Some($GET_DOC())
}
}
}
};
}
/// Macro to create a binary math UDF.
///
/// A binary math function takes two arguments of types Float32 or Float64,
/// applies a binary floating function to the argument, and returns a value of the same type.
///
/// $UDF: the name of the UDF struct that implements `ScalarUDFImpl`
/// $GNAME: a singleton instance of the UDF
/// $NAME: the name of the function
/// $BINARY_FUNC: the binary function to apply to the argument
/// $OUTPUT_ORDERING: the output ordering calculation method of the function
macro_rules! make_math_binary_udf {
($UDF:ident, $GNAME:ident, $NAME:ident, $BINARY_FUNC:ident, $OUTPUT_ORDERING:expr, $GET_DOC:expr) => {
make_udf_function!($NAME::$UDF, $GNAME, $NAME);
mod $NAME {
use std::any::Any;
use std::sync::Arc;
use arrow::array::{ArrayRef, AsArray};
use arrow::datatypes::{DataType, Float32Type, Float64Type};
use datafusion_common::{exec_err, Result};
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_expr::TypeSignature;
use datafusion_expr::{
ColumnarValue, Documentation, ScalarUDFImpl, Signature, Volatility,
};
#[derive(Debug)]
pub struct $UDF {
signature: Signature,
}
impl $UDF {
pub fn new() -> Self {
use DataType::*;
Self {
signature: Signature::one_of(
vec![
TypeSignature::Exact(vec![Float32, Float32]),
TypeSignature::Exact(vec![Float64, Float64]),
],
Volatility::Immutable,
),
}
}
}
impl ScalarUDFImpl for $UDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
stringify!($NAME)
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
let arg_type = &arg_types[0];
match arg_type {
DataType::Float32 => Ok(DataType::Float32),
// For other types (possible values float64/null/int), use Float64
_ => Ok(DataType::Float64),
}
}
fn output_ordering(
&self,
input: &[ExprProperties],
) -> Result<SortProperties> {
$OUTPUT_ORDERING(input)
}
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
let args = ColumnarValue::values_to_arrays(args)?;
let arr: ArrayRef = match args[0].data_type() {
DataType::Float64 => {
let y = args[0].as_primitive::<Float64Type>();
let x = args[1].as_primitive::<Float64Type>();
let result = arrow::compute::binary::<_, _, _, Float64Type>(
y,
x,
|y, x| f64::$BINARY_FUNC(y, x),
)?;
Arc::new(result) as _
}
DataType::Float32 => {
let y = args[0].as_primitive::<Float32Type>();
let x = args[1].as_primitive::<Float32Type>();
let result = arrow::compute::binary::<_, _, _, Float32Type>(
y,
x,
|y, x| f32::$BINARY_FUNC(y, x),
)?;
Arc::new(result) as _
}
other => {
return exec_err!(
"Unsupported data type {other:?} for function {}",
self.name()
)
}
};
Ok(ColumnarValue::Array(arr))
}
fn documentation(&self) -> Option<&Documentation> {
Some($GET_DOC())
}
}
}
};
}