1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`ReplaceDistinctWithAggregate`] replaces `DISTINCT ...` with `GROUP BY ...`
use crate::optimizer::{ApplyOrder, ApplyOrder::BottomUp};
use crate::{OptimizerConfig, OptimizerRule};
use datafusion_common::tree_node::Transformed;
use datafusion_common::{Column, Result};
use datafusion_expr::expr_rewriter::normalize_cols;
use datafusion_expr::utils::expand_wildcard;
use datafusion_expr::{col, ExprFunctionExt, LogicalPlanBuilder};
use datafusion_expr::{Aggregate, Distinct, DistinctOn, Expr, LogicalPlan};
/// Optimizer that replaces logical [[Distinct]] with a logical [[Aggregate]]
///
/// ```text
/// SELECT DISTINCT a, b FROM tab
/// ```
///
/// Into
/// ```text
/// SELECT a, b FROM tab GROUP BY a, b
/// ```
///
/// On the other hand, for a `DISTINCT ON` query the replacement is
/// a bit more involved and effectively converts
/// ```text
/// SELECT DISTINCT ON (a) b FROM tab ORDER BY a DESC, c
/// ```
///
/// into
/// ```text
/// SELECT b FROM (
/// SELECT a, FIRST_VALUE(b ORDER BY a DESC, c) AS b
/// FROM tab
/// GROUP BY a
/// )
/// ORDER BY a DESC
/// ```
/// Optimizer that replaces logical [[Distinct]] with a logical [[Aggregate]]
#[derive(Default)]
pub struct ReplaceDistinctWithAggregate {}
impl ReplaceDistinctWithAggregate {
#[allow(missing_docs)]
pub fn new() -> Self {
Self {}
}
}
impl OptimizerRule for ReplaceDistinctWithAggregate {
fn supports_rewrite(&self) -> bool {
true
}
fn rewrite(
&self,
plan: LogicalPlan,
config: &dyn OptimizerConfig,
) -> Result<Transformed<LogicalPlan>> {
match plan {
LogicalPlan::Distinct(Distinct::All(input)) => {
let group_expr = expand_wildcard(input.schema(), &input, None)?;
let field_count = input.schema().fields().len();
for dep in input.schema().functional_dependencies().iter() {
// If distinct is exactly the same with a previous GROUP BY, we can
// simply remove it:
if dep.source_indices.len() >= field_count
&& dep.source_indices[..field_count]
.iter()
.enumerate()
.all(|(idx, f_idx)| idx == *f_idx)
{
return Ok(Transformed::yes(input.as_ref().clone()));
}
}
// Replace with aggregation:
let aggr_plan = LogicalPlan::Aggregate(Aggregate::try_new(
input,
group_expr,
vec![],
)?);
Ok(Transformed::yes(aggr_plan))
}
LogicalPlan::Distinct(Distinct::On(DistinctOn {
select_expr,
on_expr,
sort_expr,
input,
schema,
})) => {
let expr_cnt = on_expr.len();
// Construct the aggregation expression to be used to fetch the selected expressions.
let first_value_udaf: std::sync::Arc<datafusion_expr::AggregateUDF> =
config.function_registry().unwrap().udaf("first_value")?;
let aggr_expr = select_expr.into_iter().map(|e| {
if let Some(order_by) = &sort_expr {
first_value_udaf
.call(vec![e])
.order_by(order_by.clone())
.build()
// guaranteed to be `Expr::AggregateFunction`
.unwrap()
} else {
first_value_udaf.call(vec![e])
}
});
let aggr_expr = normalize_cols(aggr_expr, input.as_ref())?;
let group_expr = normalize_cols(on_expr, input.as_ref())?;
// Build the aggregation plan
let plan = LogicalPlan::Aggregate(Aggregate::try_new(
input, group_expr, aggr_expr,
)?);
// TODO use LogicalPlanBuilder directly rather than recreating the Aggregate
// when https://github.com/apache/datafusion/issues/10485 is available
let lpb = LogicalPlanBuilder::from(plan);
let plan = if let Some(mut sort_expr) = sort_expr {
// While sort expressions were used in the `FIRST_VALUE` aggregation itself above,
// this on it's own isn't enough to guarantee the proper output order of the grouping
// (`ON`) expression, so we need to sort those as well.
// truncate the sort_expr to the length of on_expr
sort_expr.truncate(expr_cnt);
lpb.sort(sort_expr)?.build()?
} else {
lpb.build()?
};
// Whereas the aggregation plan by default outputs both the grouping and the aggregation
// expressions, for `DISTINCT ON` we only need to emit the original selection expressions.
let project_exprs = plan
.schema()
.iter()
.skip(expr_cnt)
.zip(schema.iter())
.map(|((new_qualifier, new_field), (old_qualifier, old_field))| {
col(Column::from((new_qualifier, new_field)))
.alias_qualified(old_qualifier.cloned(), old_field.name())
})
.collect::<Vec<Expr>>();
let plan = LogicalPlanBuilder::from(plan)
.project(project_exprs)?
.build()?;
Ok(Transformed::yes(plan))
}
_ => Ok(Transformed::no(plan)),
}
}
fn name(&self) -> &str {
"replace_distinct_aggregate"
}
fn apply_order(&self) -> Option<ApplyOrder> {
Some(BottomUp)
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::replace_distinct_aggregate::ReplaceDistinctWithAggregate;
use crate::test::*;
use datafusion_common::Result;
use datafusion_expr::{
col, logical_plan::builder::LogicalPlanBuilder, Expr, LogicalPlan,
};
use datafusion_functions_aggregate::sum::sum;
fn assert_optimized_plan_equal(plan: &LogicalPlan, expected: &str) -> Result<()> {
assert_optimized_plan_eq(
Arc::new(ReplaceDistinctWithAggregate::new()),
plan.clone(),
expected,
)
}
#[test]
fn eliminate_redundant_distinct_simple() -> Result<()> {
let table_scan = test_table_scan().unwrap();
let plan = LogicalPlanBuilder::from(table_scan)
.aggregate(vec![col("c")], Vec::<Expr>::new())?
.project(vec![col("c")])?
.distinct()?
.build()?;
let expected = "Projection: test.c\n Aggregate: groupBy=[[test.c]], aggr=[[]]\n TableScan: test";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn eliminate_redundant_distinct_pair() -> Result<()> {
let table_scan = test_table_scan().unwrap();
let plan = LogicalPlanBuilder::from(table_scan)
.aggregate(vec![col("a"), col("b")], Vec::<Expr>::new())?
.project(vec![col("a"), col("b")])?
.distinct()?
.build()?;
let expected =
"Projection: test.a, test.b\n Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n TableScan: test";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn do_not_eliminate_distinct() -> Result<()> {
let table_scan = test_table_scan().unwrap();
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a"), col("b")])?
.distinct()?
.build()?;
let expected = "Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n Projection: test.a, test.b\n TableScan: test";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn do_not_eliminate_distinct_with_aggr() -> Result<()> {
let table_scan = test_table_scan().unwrap();
let plan = LogicalPlanBuilder::from(table_scan)
.aggregate(vec![col("a"), col("b"), col("c")], vec![sum(col("c"))])?
.project(vec![col("a"), col("b")])?
.distinct()?
.build()?;
let expected =
"Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n Projection: test.a, test.b\n Aggregate: groupBy=[[test.a, test.b, test.c]], aggr=[[sum(test.c)]]\n TableScan: test";
assert_optimized_plan_equal(&plan, expected)
}
}