datafusion_optimizer/
replace_distinct_aggregate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ReplaceDistinctWithAggregate`] replaces `DISTINCT ...` with `GROUP BY ...`

use crate::optimizer::{ApplyOrder, ApplyOrder::BottomUp};
use crate::{OptimizerConfig, OptimizerRule};
use std::sync::Arc;

use datafusion_common::tree_node::Transformed;
use datafusion_common::{Column, Result};
use datafusion_expr::expr_rewriter::normalize_cols;
use datafusion_expr::utils::expand_wildcard;
use datafusion_expr::{col, ExprFunctionExt, LogicalPlanBuilder};
use datafusion_expr::{Aggregate, Distinct, DistinctOn, Expr, LogicalPlan};

/// Optimizer that replaces logical [[Distinct]] with a logical [[Aggregate]]
///
/// ```text
/// SELECT DISTINCT a, b FROM tab
/// ```
///
/// Into
/// ```text
/// SELECT a, b FROM tab GROUP BY a, b
/// ```
///
/// On the other hand, for a `DISTINCT ON` query the replacement is
/// a bit more involved and effectively converts
/// ```text
/// SELECT DISTINCT ON (a) b FROM tab ORDER BY a DESC, c
/// ```
///
/// into
/// ```text
/// SELECT b FROM (
///     SELECT a, FIRST_VALUE(b ORDER BY a DESC, c) AS b
///     FROM tab
///     GROUP BY a
/// )
/// ORDER BY a DESC
/// ```

/// Optimizer that replaces logical [[Distinct]] with a logical [[Aggregate]]
#[derive(Default, Debug)]
pub struct ReplaceDistinctWithAggregate {}

impl ReplaceDistinctWithAggregate {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

impl OptimizerRule for ReplaceDistinctWithAggregate {
    fn supports_rewrite(&self) -> bool {
        true
    }

    fn rewrite(
        &self,
        plan: LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Transformed<LogicalPlan>> {
        match plan {
            LogicalPlan::Distinct(Distinct::All(input)) => {
                let group_expr = expand_wildcard(input.schema(), &input, None)?;

                let field_count = input.schema().fields().len();
                for dep in input.schema().functional_dependencies().iter() {
                    // If distinct is exactly the same with a previous GROUP BY, we can
                    // simply remove it:
                    if dep.source_indices.len() >= field_count
                        && dep.source_indices[..field_count]
                            .iter()
                            .enumerate()
                            .all(|(idx, f_idx)| idx == *f_idx)
                    {
                        return Ok(Transformed::yes(input.as_ref().clone()));
                    }
                }

                // Replace with aggregation:
                let aggr_plan = LogicalPlan::Aggregate(Aggregate::try_new(
                    input,
                    group_expr,
                    vec![],
                )?);
                Ok(Transformed::yes(aggr_plan))
            }
            LogicalPlan::Distinct(Distinct::On(DistinctOn {
                select_expr,
                on_expr,
                sort_expr,
                input,
                schema,
            })) => {
                let expr_cnt = on_expr.len();

                // Construct the aggregation expression to be used to fetch the selected expressions.
                let first_value_udaf: Arc<datafusion_expr::AggregateUDF> =
                    config.function_registry().unwrap().udaf("first_value")?;
                let aggr_expr = select_expr.into_iter().map(|e| {
                    if let Some(order_by) = &sort_expr {
                        first_value_udaf
                            .call(vec![e])
                            .order_by(order_by.clone())
                            .build()
                            // guaranteed to be `Expr::AggregateFunction`
                            .unwrap()
                    } else {
                        first_value_udaf.call(vec![e])
                    }
                });

                let aggr_expr = normalize_cols(aggr_expr, input.as_ref())?;
                let group_expr = normalize_cols(on_expr, input.as_ref())?;

                // Build the aggregation plan
                let plan = LogicalPlan::Aggregate(Aggregate::try_new(
                    input, group_expr, aggr_expr,
                )?);
                // TODO use LogicalPlanBuilder directly rather than recreating the Aggregate
                // when https://github.com/apache/datafusion/issues/10485 is available
                let lpb = LogicalPlanBuilder::from(plan);

                let plan = if let Some(mut sort_expr) = sort_expr {
                    // While sort expressions were used in the `FIRST_VALUE` aggregation itself above,
                    // this on it's own isn't enough to guarantee the proper output order of the grouping
                    // (`ON`) expression, so we need to sort those as well.

                    // truncate the sort_expr to the length of on_expr
                    sort_expr.truncate(expr_cnt);

                    lpb.sort(sort_expr)?.build()?
                } else {
                    lpb.build()?
                };

                // Whereas the aggregation plan by default outputs both the grouping and the aggregation
                // expressions, for `DISTINCT ON` we only need to emit the original selection expressions.

                let project_exprs = plan
                    .schema()
                    .iter()
                    .skip(expr_cnt)
                    .zip(schema.iter())
                    .map(|((new_qualifier, new_field), (old_qualifier, old_field))| {
                        col(Column::from((new_qualifier, new_field)))
                            .alias_qualified(old_qualifier.cloned(), old_field.name())
                    })
                    .collect::<Vec<Expr>>();

                let plan = LogicalPlanBuilder::from(plan)
                    .project(project_exprs)?
                    .build()?;

                Ok(Transformed::yes(plan))
            }
            _ => Ok(Transformed::no(plan)),
        }
    }

    fn name(&self) -> &str {
        "replace_distinct_aggregate"
    }

    fn apply_order(&self) -> Option<ApplyOrder> {
        Some(BottomUp)
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use crate::replace_distinct_aggregate::ReplaceDistinctWithAggregate;
    use crate::test::*;

    use datafusion_common::Result;
    use datafusion_expr::{
        col, logical_plan::builder::LogicalPlanBuilder, Expr, LogicalPlan,
    };
    use datafusion_functions_aggregate::sum::sum;

    fn assert_optimized_plan_equal(plan: &LogicalPlan, expected: &str) -> Result<()> {
        assert_optimized_plan_eq(
            Arc::new(ReplaceDistinctWithAggregate::new()),
            plan.clone(),
            expected,
        )
    }

    #[test]
    fn eliminate_redundant_distinct_simple() -> Result<()> {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("c")], Vec::<Expr>::new())?
            .project(vec![col("c")])?
            .distinct()?
            .build()?;

        let expected = "Projection: test.c\n  Aggregate: groupBy=[[test.c]], aggr=[[]]\n    TableScan: test";
        assert_optimized_plan_equal(&plan, expected)
    }

    #[test]
    fn eliminate_redundant_distinct_pair() -> Result<()> {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a"), col("b")], Vec::<Expr>::new())?
            .project(vec![col("a"), col("b")])?
            .distinct()?
            .build()?;

        let expected =
            "Projection: test.a, test.b\n  Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n    TableScan: test";
        assert_optimized_plan_equal(&plan, expected)
    }

    #[test]
    fn do_not_eliminate_distinct() -> Result<()> {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .project(vec![col("a"), col("b")])?
            .distinct()?
            .build()?;

        let expected = "Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n  Projection: test.a, test.b\n    TableScan: test";
        assert_optimized_plan_equal(&plan, expected)
    }

    #[test]
    fn do_not_eliminate_distinct_with_aggr() -> Result<()> {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a"), col("b"), col("c")], vec![sum(col("c"))])?
            .project(vec![col("a"), col("b")])?
            .distinct()?
            .build()?;

        let expected =
            "Aggregate: groupBy=[[test.a, test.b]], aggr=[[]]\n  Projection: test.a, test.b\n    Aggregate: groupBy=[[test.a, test.b, test.c]], aggr=[[sum(test.c)]]\n      TableScan: test";
        assert_optimized_plan_equal(&plan, expected)
    }
}