1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::fmt::Debug;
use std::{any::Any, sync::Arc};
use arrow::datatypes::{DataType, Field, Schema, SchemaRef};
use datafusion_common::exec_err;
use datafusion_common::{internal_err, not_impl_err, DFSchema, Result};
use datafusion_expr::expr::create_function_physical_name;
use datafusion_expr::function::StateFieldsArgs;
use datafusion_expr::type_coercion::aggregates::check_arg_count;
use datafusion_expr::utils::AggregateOrderSensitivity;
use datafusion_expr::ReversedUDAF;
use datafusion_expr::{
function::AccumulatorArgs, Accumulator, AggregateUDF, Expr, GroupsAccumulator,
};
use crate::physical_expr::PhysicalExpr;
use crate::sort_expr::{LexOrdering, PhysicalSortExpr};
use crate::utils::reverse_order_bys;
use self::utils::down_cast_any_ref;
pub mod count_distinct;
pub mod groups_accumulator;
pub mod merge_arrays;
pub mod stats;
pub mod tdigest;
pub mod utils;
/// Creates a physical expression of the UDAF, that includes all necessary type coercion.
/// This function errors when `args`' can't be coerced to a valid argument type of the UDAF.
///
/// `input_exprs` and `sort_exprs` are used for customizing Accumulator
/// whose behavior depends on arguments such as the `ORDER BY`.
///
/// For example to call `ARRAY_AGG(x ORDER BY y)` would pass `y` to `sort_exprs`, `x` to `input_exprs`
///
/// `input_exprs` and `sort_exprs` are used for customizing Accumulator as the arguments in `AccumulatorArgs`,
/// if you don't need them it is fine to pass empty slice `&[]`.
///
/// `is_reversed` is used to indicate whether the aggregation is running in reverse order,
/// it could be used to hint Accumulator to accumulate in the reversed order,
/// you can just set to false if you are not reversing expression
///
/// You can also create expression by [`AggregateExprBuilder`]
#[allow(clippy::too_many_arguments)]
pub fn create_aggregate_expr(
fun: &AggregateUDF,
input_phy_exprs: &[Arc<dyn PhysicalExpr>],
input_exprs: &[Expr],
sort_exprs: &[Expr],
ordering_req: &[PhysicalSortExpr],
schema: &Schema,
name: Option<String>,
ignore_nulls: bool,
is_distinct: bool,
) -> Result<Arc<dyn AggregateExpr>> {
let mut builder =
AggregateExprBuilder::new(Arc::new(fun.clone()), input_phy_exprs.to_vec());
builder = builder.sort_exprs(sort_exprs.to_vec());
builder = builder.order_by(ordering_req.to_vec());
builder = builder.logical_exprs(input_exprs.to_vec());
builder = builder.schema(Arc::new(schema.clone()));
if let Some(name) = name {
builder = builder.alias(name);
}
if ignore_nulls {
builder = builder.ignore_nulls();
}
if is_distinct {
builder = builder.distinct();
}
builder.build()
}
#[allow(clippy::too_many_arguments)]
// This is not for external usage, consider creating with `create_aggregate_expr` instead.
pub fn create_aggregate_expr_with_dfschema(
fun: &AggregateUDF,
input_phy_exprs: &[Arc<dyn PhysicalExpr>],
input_exprs: &[Expr],
sort_exprs: &[Expr],
ordering_req: &[PhysicalSortExpr],
dfschema: &DFSchema,
alias: Option<String>,
ignore_nulls: bool,
is_distinct: bool,
is_reversed: bool,
) -> Result<Arc<dyn AggregateExpr>> {
let mut builder =
AggregateExprBuilder::new(Arc::new(fun.clone()), input_phy_exprs.to_vec());
builder = builder.sort_exprs(sort_exprs.to_vec());
builder = builder.order_by(ordering_req.to_vec());
builder = builder.logical_exprs(input_exprs.to_vec());
builder = builder.dfschema(dfschema.clone());
let schema: Schema = dfschema.into();
builder = builder.schema(Arc::new(schema));
if let Some(alias) = alias {
builder = builder.alias(alias);
}
if ignore_nulls {
builder = builder.ignore_nulls();
}
if is_distinct {
builder = builder.distinct();
}
if is_reversed {
builder = builder.reversed();
}
builder.build()
}
/// Builder for physical [`AggregateExpr`]
///
/// `AggregateExpr` contains the information necessary to call
/// an aggregate expression.
#[derive(Debug, Clone)]
pub struct AggregateExprBuilder {
fun: Arc<AggregateUDF>,
/// Physical expressions of the aggregate function
args: Vec<Arc<dyn PhysicalExpr>>,
/// Logical expressions of the aggregate function, it will be deprecated in <https://github.com/apache/datafusion/issues/11359>
logical_args: Vec<Expr>,
alias: Option<String>,
/// Arrow Schema for the aggregate function
schema: SchemaRef,
/// Datafusion Schema for the aggregate function
dfschema: DFSchema,
/// The logical order by expressions, it will be deprecated in <https://github.com/apache/datafusion/issues/11359>
sort_exprs: Vec<Expr>,
/// The physical order by expressions
ordering_req: LexOrdering,
/// Whether to ignore null values
ignore_nulls: bool,
/// Whether is distinct aggregate function
is_distinct: bool,
/// Whether the expression is reversed
is_reversed: bool,
}
impl AggregateExprBuilder {
pub fn new(fun: Arc<AggregateUDF>, args: Vec<Arc<dyn PhysicalExpr>>) -> Self {
Self {
fun,
args,
logical_args: vec![],
alias: None,
schema: Arc::new(Schema::empty()),
dfschema: DFSchema::empty(),
sort_exprs: vec![],
ordering_req: vec![],
ignore_nulls: false,
is_distinct: false,
is_reversed: false,
}
}
pub fn build(self) -> Result<Arc<dyn AggregateExpr>> {
let Self {
fun,
args,
logical_args,
alias,
schema,
dfschema,
sort_exprs,
ordering_req,
ignore_nulls,
is_distinct,
is_reversed,
} = self;
if args.is_empty() {
return internal_err!("args should not be empty");
}
let mut ordering_fields = vec![];
debug_assert_eq!(sort_exprs.len(), ordering_req.len());
if !ordering_req.is_empty() {
let ordering_types = ordering_req
.iter()
.map(|e| e.expr.data_type(&schema))
.collect::<Result<Vec<_>>>()?;
ordering_fields = utils::ordering_fields(&ordering_req, &ordering_types);
}
let input_exprs_types = args
.iter()
.map(|arg| arg.data_type(&schema))
.collect::<Result<Vec<_>>>()?;
check_arg_count(
fun.name(),
&input_exprs_types,
&fun.signature().type_signature,
)?;
let data_type = fun.return_type(&input_exprs_types)?;
let name = match alias {
None => create_function_physical_name(
fun.name(),
is_distinct,
&logical_args,
if sort_exprs.is_empty() {
None
} else {
Some(&sort_exprs)
},
)?,
Some(alias) => alias,
};
Ok(Arc::new(AggregateFunctionExpr {
fun: Arc::unwrap_or_clone(fun),
args,
logical_args,
data_type,
name,
schema: Arc::unwrap_or_clone(schema),
dfschema,
sort_exprs,
ordering_req,
ignore_nulls,
ordering_fields,
is_distinct,
input_types: input_exprs_types,
is_reversed,
}))
}
pub fn alias(mut self, alias: impl Into<String>) -> Self {
self.alias = Some(alias.into());
self
}
pub fn schema(mut self, schema: SchemaRef) -> Self {
self.schema = schema;
self
}
pub fn dfschema(mut self, dfschema: DFSchema) -> Self {
self.dfschema = dfschema;
self
}
pub fn order_by(mut self, order_by: LexOrdering) -> Self {
self.ordering_req = order_by;
self
}
pub fn reversed(mut self) -> Self {
self.is_reversed = true;
self
}
pub fn with_reversed(mut self, is_reversed: bool) -> Self {
self.is_reversed = is_reversed;
self
}
pub fn distinct(mut self) -> Self {
self.is_distinct = true;
self
}
pub fn with_distinct(mut self, is_distinct: bool) -> Self {
self.is_distinct = is_distinct;
self
}
pub fn ignore_nulls(mut self) -> Self {
self.ignore_nulls = true;
self
}
pub fn with_ignore_nulls(mut self, ignore_nulls: bool) -> Self {
self.ignore_nulls = ignore_nulls;
self
}
/// This method will be deprecated in <https://github.com/apache/datafusion/issues/11359>
pub fn sort_exprs(mut self, sort_exprs: Vec<Expr>) -> Self {
self.sort_exprs = sort_exprs;
self
}
/// This method will be deprecated in <https://github.com/apache/datafusion/issues/11359>
pub fn logical_exprs(mut self, logical_args: Vec<Expr>) -> Self {
self.logical_args = logical_args;
self
}
}
/// An aggregate expression that:
/// * knows its resulting field
/// * knows how to create its accumulator
/// * knows its accumulator's state's field
/// * knows the expressions from whose its accumulator will receive values
///
/// Any implementation of this trait also needs to implement the
/// `PartialEq<dyn Any>` to allows comparing equality between the
/// trait objects.
pub trait AggregateExpr: Send + Sync + Debug + PartialEq<dyn Any> {
/// Returns the aggregate expression as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// the field of the final result of this aggregation.
fn field(&self) -> Result<Field>;
/// the accumulator used to accumulate values from the expressions.
/// the accumulator expects the same number of arguments as `expressions` and must
/// return states with the same description as `state_fields`
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>>;
/// the fields that encapsulate the Accumulator's state
/// the number of fields here equals the number of states that the accumulator contains
fn state_fields(&self) -> Result<Vec<Field>>;
/// expressions that are passed to the Accumulator.
/// Single-column aggregations such as `sum` return a single value, others (e.g. `cov`) return many.
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Order by requirements for the aggregate function
/// By default it is `None` (there is no requirement)
/// Order-sensitive aggregators, such as `FIRST_VALUE(x ORDER BY y)` should implement this
fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
None
}
/// Indicates whether aggregator can produce the correct result with any
/// arbitrary input ordering. By default, we assume that aggregate expressions
/// are order insensitive.
fn order_sensitivity(&self) -> AggregateOrderSensitivity {
AggregateOrderSensitivity::Insensitive
}
/// Sets the indicator whether ordering requirements of the aggregator is
/// satisfied by its input. If this is not the case, aggregators with order
/// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
/// the correct result with possibly more work internally.
///
/// # Returns
///
/// Returns `Ok(Some(updated_expr))` if the process completes successfully.
/// If the expression can benefit from existing input ordering, but does
/// not implement the method, returns an error. Order insensitive and hard
/// requirement aggregators return `Ok(None)`.
fn with_beneficial_ordering(
self: Arc<Self>,
_requirement_satisfied: bool,
) -> Result<Option<Arc<dyn AggregateExpr>>> {
if self.order_bys().is_some() && self.order_sensitivity().is_beneficial() {
return exec_err!(
"Should implement with satisfied for aggregator :{:?}",
self.name()
);
}
Ok(None)
}
/// Human readable name such as `"MIN(c2)"`. The default
/// implementation returns placeholder text.
fn name(&self) -> &str {
"AggregateExpr: default name"
}
/// If the aggregate expression has a specialized
/// [`GroupsAccumulator`] implementation. If this returns true,
/// `[Self::create_groups_accumulator`] will be called.
fn groups_accumulator_supported(&self) -> bool {
false
}
/// Return a specialized [`GroupsAccumulator`] that manages state
/// for all groups.
///
/// For maximum performance, a [`GroupsAccumulator`] should be
/// implemented in addition to [`Accumulator`].
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
}
/// Construct an expression that calculates the aggregate in reverse.
/// Typically the "reverse" expression is itself (e.g. SUM, COUNT).
/// For aggregates that do not support calculation in reverse,
/// returns None (which is the default value).
fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
None
}
/// Creates accumulator implementation that supports retract
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
not_impl_err!("Retractable Accumulator hasn't been implemented for {self:?} yet")
}
/// Returns all expressions used in the [`AggregateExpr`].
/// These expressions are (1)function arguments, (2) order by expressions.
fn all_expressions(&self) -> AggregatePhysicalExpressions {
let args = self.expressions();
let order_bys = self.order_bys().unwrap_or(&[]);
let order_by_exprs = order_bys
.iter()
.map(|sort_expr| sort_expr.expr.clone())
.collect::<Vec<_>>();
AggregatePhysicalExpressions {
args,
order_by_exprs,
}
}
/// Rewrites [`AggregateExpr`], with new expressions given. The argument should be consistent
/// with the return value of the [`AggregateExpr::all_expressions`] method.
/// Returns `Some(Arc<dyn AggregateExpr>)` if re-write is supported, otherwise returns `None`.
/// TODO: This method only rewrites the [`PhysicalExpr`]s and does not handle [`Expr`]s.
/// This can cause silent bugs and should be fixed in the future (possibly with physical-to-logical
/// conversions).
fn with_new_expressions(
&self,
_args: Vec<Arc<dyn PhysicalExpr>>,
_order_by_exprs: Vec<Arc<dyn PhysicalExpr>>,
) -> Option<Arc<dyn AggregateExpr>> {
None
}
/// If this function is max, return (output_field, true)
/// if the function is min, return (output_field, false)
/// otherwise return None (the default)
///
/// output_field is the name of the column produced by this aggregate
///
/// Note: this is used to use special aggregate implementations in certain conditions
fn get_minmax_desc(&self) -> Option<(Field, bool)> {
None
}
}
/// Stores the physical expressions used inside the `AggregateExpr`.
pub struct AggregatePhysicalExpressions {
/// Aggregate function arguments
pub args: Vec<Arc<dyn PhysicalExpr>>,
/// Order by expressions
pub order_by_exprs: Vec<Arc<dyn PhysicalExpr>>,
}
/// Physical aggregate expression of a UDAF.
#[derive(Debug, Clone)]
pub struct AggregateFunctionExpr {
fun: AggregateUDF,
args: Vec<Arc<dyn PhysicalExpr>>,
logical_args: Vec<Expr>,
/// Output / return type of this aggregate
data_type: DataType,
name: String,
schema: Schema,
dfschema: DFSchema,
// The logical order by expressions
sort_exprs: Vec<Expr>,
// The physical order by expressions
ordering_req: LexOrdering,
// Whether to ignore null values
ignore_nulls: bool,
// fields used for order sensitive aggregation functions
ordering_fields: Vec<Field>,
is_distinct: bool,
is_reversed: bool,
input_types: Vec<DataType>,
}
impl AggregateFunctionExpr {
/// Return the `AggregateUDF` used by this `AggregateFunctionExpr`
pub fn fun(&self) -> &AggregateUDF {
&self.fun
}
/// Return if the aggregation is distinct
pub fn is_distinct(&self) -> bool {
self.is_distinct
}
/// Return if the aggregation ignores nulls
pub fn ignore_nulls(&self) -> bool {
self.ignore_nulls
}
/// Return if the aggregation is reversed
pub fn is_reversed(&self) -> bool {
self.is_reversed
}
}
impl AggregateExpr for AggregateFunctionExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.args.clone()
}
fn state_fields(&self) -> Result<Vec<Field>> {
let args = StateFieldsArgs {
name: &self.name,
input_types: &self.input_types,
return_type: &self.data_type,
ordering_fields: &self.ordering_fields,
is_distinct: self.is_distinct,
};
self.fun.state_fields(args)
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
let acc_args = AccumulatorArgs {
data_type: &self.data_type,
schema: &self.schema,
dfschema: &self.dfschema,
ignore_nulls: self.ignore_nulls,
sort_exprs: &self.sort_exprs,
is_distinct: self.is_distinct,
input_types: &self.input_types,
input_exprs: &self.logical_args,
name: &self.name,
is_reversed: self.is_reversed,
};
self.fun.accumulator(acc_args)
}
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
let args = AccumulatorArgs {
data_type: &self.data_type,
schema: &self.schema,
dfschema: &self.dfschema,
ignore_nulls: self.ignore_nulls,
sort_exprs: &self.sort_exprs,
is_distinct: self.is_distinct,
input_types: &self.input_types,
input_exprs: &self.logical_args,
name: &self.name,
is_reversed: self.is_reversed,
};
let accumulator = self.fun.create_sliding_accumulator(args)?;
// Accumulators that have window frame startings different
// than `UNBOUNDED PRECEDING`, such as `1 PRECEDING`, need to
// implement retract_batch method in order to run correctly
// currently in DataFusion.
//
// If this `retract_batches` is not present, there is no way
// to calculate result correctly. For example, the query
//
// ```sql
// SELECT
// SUM(a) OVER(ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS sum_a
// FROM
// t
// ```
//
// 1. First sum value will be the sum of rows between `[0, 1)`,
//
// 2. Second sum value will be the sum of rows between `[0, 2)`
//
// 3. Third sum value will be the sum of rows between `[1, 3)`, etc.
//
// Since the accumulator keeps the running sum:
//
// 1. First sum we add to the state sum value between `[0, 1)`
//
// 2. Second sum we add to the state sum value between `[1, 2)`
// (`[0, 1)` is already in the state sum, hence running sum will
// cover `[0, 2)` range)
//
// 3. Third sum we add to the state sum value between `[2, 3)`
// (`[0, 2)` is already in the state sum). Also we need to
// retract values between `[0, 1)` by this way we can obtain sum
// between [1, 3) which is indeed the appropriate range.
//
// When we use `UNBOUNDED PRECEDING` in the query starting
// index will always be 0 for the desired range, and hence the
// `retract_batch` method will not be called. In this case
// having retract_batch is not a requirement.
//
// This approach is a a bit different than window function
// approach. In window function (when they use a window frame)
// they get all the desired range during evaluation.
if !accumulator.supports_retract_batch() {
return not_impl_err!(
"Aggregate can not be used as a sliding accumulator because \
`retract_batch` is not implemented: {}",
self.name
);
}
Ok(accumulator)
}
fn name(&self) -> &str {
&self.name
}
fn groups_accumulator_supported(&self) -> bool {
let args = AccumulatorArgs {
data_type: &self.data_type,
schema: &self.schema,
dfschema: &self.dfschema,
ignore_nulls: self.ignore_nulls,
sort_exprs: &self.sort_exprs,
is_distinct: self.is_distinct,
input_types: &self.input_types,
input_exprs: &self.logical_args,
name: &self.name,
is_reversed: self.is_reversed,
};
self.fun.groups_accumulator_supported(args)
}
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
let args = AccumulatorArgs {
data_type: &self.data_type,
schema: &self.schema,
dfschema: &self.dfschema,
ignore_nulls: self.ignore_nulls,
sort_exprs: &self.sort_exprs,
is_distinct: self.is_distinct,
input_types: &self.input_types,
input_exprs: &self.logical_args,
name: &self.name,
is_reversed: self.is_reversed,
};
self.fun.create_groups_accumulator(args)
}
fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
if self.ordering_req.is_empty() {
return None;
}
if !self.order_sensitivity().is_insensitive() {
return Some(&self.ordering_req);
}
None
}
fn order_sensitivity(&self) -> AggregateOrderSensitivity {
if !self.ordering_req.is_empty() {
// If there is requirement, use the sensitivity of the implementation
self.fun.order_sensitivity()
} else {
// If no requirement, aggregator is order insensitive
AggregateOrderSensitivity::Insensitive
}
}
fn with_beneficial_ordering(
self: Arc<Self>,
beneficial_ordering: bool,
) -> Result<Option<Arc<dyn AggregateExpr>>> {
let Some(updated_fn) = self
.fun
.clone()
.with_beneficial_ordering(beneficial_ordering)?
else {
return Ok(None);
};
create_aggregate_expr_with_dfschema(
&updated_fn,
&self.args,
&self.logical_args,
&self.sort_exprs,
&self.ordering_req,
&self.dfschema,
Some(self.name().to_string()),
self.ignore_nulls,
self.is_distinct,
self.is_reversed,
)
.map(Some)
}
fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
match self.fun.reverse_udf() {
ReversedUDAF::NotSupported => None,
ReversedUDAF::Identical => Some(Arc::new(self.clone())),
ReversedUDAF::Reversed(reverse_udf) => {
let reverse_ordering_req = reverse_order_bys(&self.ordering_req);
let reverse_sort_exprs = self
.sort_exprs
.iter()
.map(|e| {
if let Expr::Sort(s) = e {
Expr::Sort(s.reverse())
} else {
// Expects to receive `Expr::Sort`.
unreachable!()
}
})
.collect::<Vec<_>>();
let mut name = self.name().to_string();
// If the function is changed, we need to reverse order_by clause as well
// i.e. First(a order by b asc null first) -> Last(a order by b desc null last)
if self.fun().name() == reverse_udf.name() {
} else {
replace_order_by_clause(&mut name);
}
replace_fn_name_clause(&mut name, self.fun.name(), reverse_udf.name());
let reverse_aggr = create_aggregate_expr_with_dfschema(
&reverse_udf,
&self.args,
&self.logical_args,
&reverse_sort_exprs,
&reverse_ordering_req,
&self.dfschema,
Some(name),
self.ignore_nulls,
self.is_distinct,
!self.is_reversed,
)
.unwrap();
Some(reverse_aggr)
}
}
}
fn get_minmax_desc(&self) -> Option<(Field, bool)> {
self.fun
.is_descending()
.and_then(|flag| self.field().ok().map(|f| (f, flag)))
}
}
impl PartialEq<dyn Any> for AggregateFunctionExpr {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.fun == x.fun
&& self.args.len() == x.args.len()
&& self
.args
.iter()
.zip(x.args.iter())
.all(|(this_arg, other_arg)| this_arg.eq(other_arg))
})
.unwrap_or(false)
}
}
fn replace_order_by_clause(order_by: &mut String) {
let suffixes = [
(" DESC NULLS FIRST]", " ASC NULLS LAST]"),
(" ASC NULLS FIRST]", " DESC NULLS LAST]"),
(" DESC NULLS LAST]", " ASC NULLS FIRST]"),
(" ASC NULLS LAST]", " DESC NULLS FIRST]"),
];
if let Some(start) = order_by.find("ORDER BY [") {
if let Some(end) = order_by[start..].find(']') {
let order_by_start = start + 9;
let order_by_end = start + end;
let column_order = &order_by[order_by_start..=order_by_end];
for (suffix, replacement) in suffixes {
if column_order.ends_with(suffix) {
let new_order = column_order.replace(suffix, replacement);
order_by.replace_range(order_by_start..=order_by_end, &new_order);
break;
}
}
}
}
}
fn replace_fn_name_clause(aggr_name: &mut String, fn_name_old: &str, fn_name_new: &str) {
*aggr_name = aggr_name.replace(fn_name_old, fn_name_new);
}