1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// UnLt required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::array::BooleanArray;
use arrow::array::{make_comparator, ArrayRef, Datum};
use arrow::buffer::NullBuffer;
use arrow::compute::SortOptions;
use arrow::error::ArrowError;
use datafusion_common::internal_err;
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::{ColumnarValue, Operator};
use std::sync::Arc;

/// Applies a binary [`Datum`] kernel `f` to `lhs` and `rhs`
///
/// This maps arrow-rs' [`Datum`] kernels to DataFusion's [`ColumnarValue`] abstraction
pub fn apply(
    lhs: &ColumnarValue,
    rhs: &ColumnarValue,
    f: impl Fn(&dyn Datum, &dyn Datum) -> Result<ArrayRef, ArrowError>,
) -> Result<ColumnarValue> {
    match (&lhs, &rhs) {
        (ColumnarValue::Array(left), ColumnarValue::Array(right)) => {
            Ok(ColumnarValue::Array(f(&left.as_ref(), &right.as_ref())?))
        }
        (ColumnarValue::Scalar(left), ColumnarValue::Array(right)) => Ok(
            ColumnarValue::Array(f(&left.to_scalar()?, &right.as_ref())?),
        ),
        (ColumnarValue::Array(left), ColumnarValue::Scalar(right)) => Ok(
            ColumnarValue::Array(f(&left.as_ref(), &right.to_scalar()?)?),
        ),
        (ColumnarValue::Scalar(left), ColumnarValue::Scalar(right)) => {
            let array = f(&left.to_scalar()?, &right.to_scalar()?)?;
            let scalar = ScalarValue::try_from_array(array.as_ref(), 0)?;
            Ok(ColumnarValue::Scalar(scalar))
        }
    }
}

/// Applies a binary [`Datum`] comparison kernel `f` to `lhs` and `rhs`
pub fn apply_cmp(
    lhs: &ColumnarValue,
    rhs: &ColumnarValue,
    f: impl Fn(&dyn Datum, &dyn Datum) -> Result<BooleanArray, ArrowError>,
) -> Result<ColumnarValue> {
    apply(lhs, rhs, |l, r| Ok(Arc::new(f(l, r)?)))
}

/// Applies a binary [`Datum`] comparison kernel `f` to `lhs` and `rhs` for nested type like
/// List, FixedSizeList, LargeList, Struct, Union, Map, or a dictionary of a nested type
pub fn apply_cmp_for_nested(
    op: Operator,
    lhs: &ColumnarValue,
    rhs: &ColumnarValue,
) -> Result<ColumnarValue> {
    if matches!(
        op,
        Operator::Eq
            | Operator::NotEq
            | Operator::Lt
            | Operator::Gt
            | Operator::LtEq
            | Operator::GtEq
            | Operator::IsDistinctFrom
            | Operator::IsNotDistinctFrom
    ) {
        apply(lhs, rhs, |l, r| {
            Ok(Arc::new(compare_op_for_nested(op, l, r)?))
        })
    } else {
        internal_err!("invalid operator for nested")
    }
}

/// Compare on nested type List, Struct, and so on
pub fn compare_op_for_nested(
    op: Operator,
    lhs: &dyn Datum,
    rhs: &dyn Datum,
) -> Result<BooleanArray> {
    let (l, is_l_scalar) = lhs.get();
    let (r, is_r_scalar) = rhs.get();
    let l_len = l.len();
    let r_len = r.len();

    if l_len != r_len && !is_l_scalar && !is_r_scalar {
        return internal_err!("len mismatch");
    }

    let len = match is_l_scalar {
        true => r_len,
        false => l_len,
    };

    // fast path, if compare with one null and operator is not 'distinct', then we can return null array directly
    if !matches!(op, Operator::IsDistinctFrom | Operator::IsNotDistinctFrom)
        && (is_l_scalar && l.null_count() == 1 || is_r_scalar && r.null_count() == 1)
    {
        return Ok(BooleanArray::new_null(len));
    }

    // TODO: make SortOptions configurable
    // we choose the default behaviour from arrow-rs which has null-first that follow spark's behaviour
    let cmp = make_comparator(l, r, SortOptions::default())?;

    let cmp_with_op = |i, j| match op {
        Operator::Eq | Operator::IsNotDistinctFrom => cmp(i, j).is_eq(),
        Operator::Lt => cmp(i, j).is_lt(),
        Operator::Gt => cmp(i, j).is_gt(),
        Operator::LtEq => !cmp(i, j).is_gt(),
        Operator::GtEq => !cmp(i, j).is_lt(),
        Operator::NotEq | Operator::IsDistinctFrom => !cmp(i, j).is_eq(),
        _ => unreachable!("unexpected operator found"),
    };

    let values = match (is_l_scalar, is_r_scalar) {
        (false, false) => (0..len).map(|i| cmp_with_op(i, i)).collect(),
        (true, false) => (0..len).map(|i| cmp_with_op(0, i)).collect(),
        (false, true) => (0..len).map(|i| cmp_with_op(i, 0)).collect(),
        (true, true) => std::iter::once(cmp_with_op(0, 0)).collect(),
    };

    // Distinct understand how to compare with NULL
    // i.e NULL is distinct from NULL -> false
    if matches!(op, Operator::IsDistinctFrom | Operator::IsNotDistinctFrom) {
        Ok(BooleanArray::new(values, None))
    } else {
        // If one of the side is NULL, we returns NULL
        // i.e. NULL eq NULL -> NULL
        let nulls = NullBuffer::union(l.nulls(), r.nulls());
        Ok(BooleanArray::new(values, nulls))
    }
}