1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Sort expressions
use std::fmt::Display;
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use crate::physical_expr::PhysicalExpr;
use crate::utils::limited_convert_logical_expr_to_physical_expr_with_dfschema;
use arrow::compute::kernels::sort::{SortColumn, SortOptions};
use arrow::datatypes::Schema;
use arrow::record_batch::RecordBatch;
use datafusion_common::{exec_err, DFSchema, Result};
use datafusion_expr::{ColumnarValue, Expr};
/// Represents Sort operation for a column in a RecordBatch
#[derive(Clone, Debug)]
pub struct PhysicalSortExpr {
/// Physical expression representing the column to sort
pub expr: Arc<dyn PhysicalExpr>,
/// Option to specify how the given column should be sorted
pub options: SortOptions,
}
impl PhysicalSortExpr {
/// Create a new PhysicalSortExpr
pub fn new(expr: Arc<dyn PhysicalExpr>, options: SortOptions) -> Self {
Self { expr, options }
}
}
impl PartialEq for PhysicalSortExpr {
fn eq(&self, other: &PhysicalSortExpr) -> bool {
self.options == other.options && self.expr.eq(&other.expr)
}
}
impl Eq for PhysicalSortExpr {}
impl Hash for PhysicalSortExpr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.expr.hash(state);
self.options.hash(state);
}
}
impl std::fmt::Display for PhysicalSortExpr {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{} {}", self.expr, to_str(&self.options))
}
}
impl PhysicalSortExpr {
/// evaluate the sort expression into SortColumn that can be passed into arrow sort kernel
pub fn evaluate_to_sort_column(&self, batch: &RecordBatch) -> Result<SortColumn> {
let value_to_sort = self.expr.evaluate(batch)?;
let array_to_sort = match value_to_sort {
ColumnarValue::Array(array) => array,
ColumnarValue::Scalar(scalar) => scalar.to_array_of_size(batch.num_rows())?,
};
Ok(SortColumn {
values: array_to_sort,
options: Some(self.options),
})
}
/// Checks whether this sort expression satisfies the given `requirement`.
/// If sort options are unspecified in `requirement`, only expressions are
/// compared for inequality.
pub fn satisfy(
&self,
requirement: &PhysicalSortRequirement,
schema: &Schema,
) -> bool {
// If the column is not nullable, NULLS FIRST/LAST is not important.
let nullable = self.expr.nullable(schema).unwrap_or(true);
self.expr.eq(&requirement.expr)
&& if nullable {
requirement
.options
.map_or(true, |opts| self.options == opts)
} else {
requirement
.options
.map_or(true, |opts| self.options.descending == opts.descending)
}
}
/// Returns a [`Display`]able list of `PhysicalSortExpr`.
pub fn format_list(input: &[PhysicalSortExpr]) -> impl Display + '_ {
struct DisplayableList<'a>(&'a [PhysicalSortExpr]);
impl<'a> Display for DisplayableList<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let mut first = true;
for sort_expr in self.0 {
if first {
first = false;
} else {
write!(f, ",")?;
}
write!(f, "{}", sort_expr)?;
}
Ok(())
}
}
DisplayableList(input)
}
}
/// Represents sort requirement associated with a plan
///
/// If the requirement includes [`SortOptions`] then both the
/// expression *and* the sort options must match.
///
/// If the requirement does not include [`SortOptions`]) then only the
/// expressions must match.
///
/// # Examples
///
/// With sort options (`A`, `DESC NULLS FIRST`):
/// * `ORDER BY A DESC NULLS FIRST` matches
/// * `ORDER BY A ASC NULLS FIRST` does not match (`ASC` vs `DESC`)
/// * `ORDER BY B DESC NULLS FIRST` does not match (different expr)
///
/// Without sort options (`A`, None):
/// * `ORDER BY A DESC NULLS FIRST` matches
/// * `ORDER BY A ASC NULLS FIRST` matches (`ASC` and `NULL` options ignored)
/// * `ORDER BY B DESC NULLS FIRST` does not match (different expr)
#[derive(Clone, Debug)]
pub struct PhysicalSortRequirement {
/// Physical expression representing the column to sort
pub expr: Arc<dyn PhysicalExpr>,
/// Option to specify how the given column should be sorted.
/// If unspecified, there are no constraints on sort options.
pub options: Option<SortOptions>,
}
impl From<PhysicalSortRequirement> for PhysicalSortExpr {
/// If options is `None`, the default sort options `ASC, NULLS LAST` is used.
///
/// The default is picked to be consistent with
/// PostgreSQL: <https://www.postgresql.org/docs/current/queries-order.html>
fn from(value: PhysicalSortRequirement) -> Self {
let options = value.options.unwrap_or(SortOptions {
descending: false,
nulls_first: false,
});
PhysicalSortExpr::new(value.expr, options)
}
}
impl From<PhysicalSortExpr> for PhysicalSortRequirement {
fn from(value: PhysicalSortExpr) -> Self {
PhysicalSortRequirement::new(value.expr, Some(value.options))
}
}
impl PartialEq for PhysicalSortRequirement {
fn eq(&self, other: &PhysicalSortRequirement) -> bool {
self.options == other.options && self.expr.eq(&other.expr)
}
}
impl std::fmt::Display for PhysicalSortRequirement {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let opts_string = self.options.as_ref().map_or("NA", to_str);
write!(f, "{} {}", self.expr, opts_string)
}
}
impl PhysicalSortRequirement {
/// Creates a new requirement.
///
/// If `options` is `Some(..)`, creates an `exact` requirement,
/// which must match both `options` and `expr`.
///
/// If `options` is `None`, Creates a new `expr_only` requirement,
/// which must match only `expr`.
///
/// See [`PhysicalSortRequirement`] for examples.
pub fn new(expr: Arc<dyn PhysicalExpr>, options: Option<SortOptions>) -> Self {
Self { expr, options }
}
/// Replace the required expression for this requirement with the new one
pub fn with_expr(mut self, expr: Arc<dyn PhysicalExpr>) -> Self {
self.expr = expr;
self
}
/// Returns whether this requirement is equal or more specific than `other`.
pub fn compatible(&self, other: &PhysicalSortRequirement) -> bool {
self.expr.eq(&other.expr)
&& other.options.map_or(true, |other_opts| {
self.options.map_or(false, |opts| opts == other_opts)
})
}
/// Returns [`PhysicalSortRequirement`] that requires the exact
/// sort of the [`PhysicalSortExpr`]s in `ordering`
///
/// This method takes `&'a PhysicalSortExpr` to make it easy to
/// use implementing [`ExecutionPlan::required_input_ordering`].
///
/// [`ExecutionPlan::required_input_ordering`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html#method.required_input_ordering
pub fn from_sort_exprs<'a>(
ordering: impl IntoIterator<Item = &'a PhysicalSortExpr>,
) -> Vec<PhysicalSortRequirement> {
ordering
.into_iter()
.cloned()
.map(PhysicalSortRequirement::from)
.collect()
}
/// Converts an iterator of [`PhysicalSortRequirement`] into a Vec
/// of [`PhysicalSortExpr`]s.
///
/// This function converts `PhysicalSortRequirement` to `PhysicalSortExpr`
/// for each entry in the input. If required ordering is None for an entry
/// default ordering `ASC, NULLS LAST` if given (see the `PhysicalSortExpr::from`).
pub fn to_sort_exprs(
requirements: impl IntoIterator<Item = PhysicalSortRequirement>,
) -> Vec<PhysicalSortExpr> {
requirements
.into_iter()
.map(PhysicalSortExpr::from)
.collect()
}
}
/// Returns the SQL string representation of the given [SortOptions] object.
#[inline]
fn to_str(options: &SortOptions) -> &str {
match (options.descending, options.nulls_first) {
(true, true) => "DESC",
(true, false) => "DESC NULLS LAST",
(false, true) => "ASC",
(false, false) => "ASC NULLS LAST",
}
}
///`LexOrdering` is an alias for the type `Vec<PhysicalSortExpr>`, which represents
/// a lexicographical ordering.
pub type LexOrdering = Vec<PhysicalSortExpr>;
///`LexOrderingRef` is an alias for the type &`[PhysicalSortExpr]`, which represents
/// a reference to a lexicographical ordering.
pub type LexOrderingRef<'a> = &'a [PhysicalSortExpr];
///`LexRequirement` is an alias for the type `Vec<PhysicalSortRequirement>`, which
/// represents a lexicographical ordering requirement.
pub type LexRequirement = Vec<PhysicalSortRequirement>;
///`LexRequirementRef` is an alias for the type &`[PhysicalSortRequirement]`, which
/// represents a reference to a lexicographical ordering requirement.
pub type LexRequirementRef<'a> = &'a [PhysicalSortRequirement];
/// Converts each [`Expr::Sort`] into a corresponding [`PhysicalSortExpr`].
/// Returns an error if the given logical expression is not a [`Expr::Sort`].
pub fn limited_convert_logical_sort_exprs_to_physical_with_dfschema(
exprs: &[Expr],
dfschema: &DFSchema,
) -> Result<Vec<PhysicalSortExpr>> {
// Construct PhysicalSortExpr objects from Expr objects:
let mut sort_exprs = vec![];
for expr in exprs {
let Expr::Sort(sort) = expr else {
return exec_err!("Expects to receive sort expression");
};
sort_exprs.push(PhysicalSortExpr::new(
limited_convert_logical_expr_to_physical_expr_with_dfschema(
sort.expr.as_ref(),
dfschema,
)?,
SortOptions {
descending: !sort.asc,
nulls_first: sort.nulls_first,
},
))
}
Ok(sort_exprs)
}