datafusion_physical_expr_common/binary_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! [`ArrowBytesMap`] and [`ArrowBytesSet`] for storing maps/sets of values from
//! StringArray / LargeStringArray / BinaryArray / LargeBinaryArray.
use ahash::RandomState;
use arrow::array::cast::AsArray;
use arrow::array::types::{ByteArrayType, GenericBinaryType, GenericStringType};
use arrow::array::{
Array, ArrayRef, BooleanBufferBuilder, BufferBuilder, GenericBinaryArray,
GenericStringArray, OffsetSizeTrait,
};
use arrow::buffer::{NullBuffer, OffsetBuffer, ScalarBuffer};
use arrow::datatypes::DataType;
use datafusion_common::hash_utils::create_hashes;
use datafusion_common::utils::proxy::{RawTableAllocExt, VecAllocExt};
use std::any::type_name;
use std::fmt::Debug;
use std::mem::{size_of, swap};
use std::ops::Range;
use std::sync::Arc;
/// Should the output be a String or Binary?
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum OutputType {
/// `StringArray` or `LargeStringArray`
Utf8,
/// `StringViewArray`
Utf8View,
/// `BinaryArray` or `LargeBinaryArray`
Binary,
/// `BinaryViewArray`
BinaryView,
}
/// HashSet optimized for storing string or binary values that can produce that
/// the final set as a GenericStringArray with minimal copies.
#[derive(Debug)]
pub struct ArrowBytesSet<O: OffsetSizeTrait>(ArrowBytesMap<O, ()>);
impl<O: OffsetSizeTrait> ArrowBytesSet<O> {
pub fn new(output_type: OutputType) -> Self {
Self(ArrowBytesMap::new(output_type))
}
/// Return the contents of this set and replace it with a new empty
/// set with the same output type
pub fn take(&mut self) -> Self {
Self(self.0.take())
}
/// Inserts each value from `values` into the set
pub fn insert(&mut self, values: &ArrayRef) {
fn make_payload_fn(_value: Option<&[u8]>) {}
fn observe_payload_fn(_payload: ()) {}
self.0
.insert_if_new(values, make_payload_fn, observe_payload_fn);
}
/// Converts this set into a `StringArray`/`LargeStringArray` or
/// `BinaryArray`/`LargeBinaryArray` containing each distinct value that
/// was interned. This is done without copying the values.
pub fn into_state(self) -> ArrayRef {
self.0.into_state()
}
/// Returns the total number of distinct values (including nulls) seen so far
pub fn len(&self) -> usize {
self.0.len()
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// returns the total number of distinct values (not including nulls) seen so far
pub fn non_null_len(&self) -> usize {
self.0.non_null_len()
}
/// Return the total size, in bytes, of memory used to store the data in
/// this set, not including `self`
pub fn size(&self) -> usize {
self.0.size()
}
}
/// Optimized map for storing Arrow "bytes" types (`String`, `LargeString`,
/// `Binary`, and `LargeBinary`) values that can produce the set of keys on
/// output as `GenericBinaryArray` without copies.
///
/// Equivalent to `HashSet<String, V>` but with better performance if you need
/// to emit the keys as an Arrow `StringArray` / `BinaryArray`. For other
/// purposes it is the same as a `HashMap<String, V>`
///
/// # Generic Arguments
///
/// * `O`: OffsetSize (String/LargeString)
/// * `V`: payload type
///
/// # Description
///
/// This is a specialized HashMap with the following properties:
///
/// 1. Optimized for storing and emitting Arrow byte types (e.g.
/// `StringArray` / `BinaryArray`) very efficiently by minimizing copying of
/// the string values themselves, both when inserting and when emitting the
/// final array.
///
///
/// 2. Retains the insertion order of entries in the final array. The values are
/// in the same order as they were inserted.
///
/// Note this structure can be used as a `HashSet` by specifying the value type
/// as `()`, as is done by [`ArrowBytesSet`].
///
/// This map is used by the special `COUNT DISTINCT` aggregate function to
/// store the distinct values, and by the `GROUP BY` operator to store
/// group values when they are a single string array.
///
/// # Example
///
/// The following diagram shows how the map would store the four strings
/// "Foo", NULL, "Bar", "TheQuickBrownFox":
///
/// * `hashtable` stores entries for each distinct string that has been
/// inserted. The entries contain the payload as well as information about the
/// value (either an offset or the actual bytes, see `Entry` docs for more
/// details)
///
/// * `offsets` stores offsets into `buffer` for each distinct string value,
/// following the same convention as the offsets in a `StringArray` or
/// `LargeStringArray`.
///
/// * `buffer` stores the actual byte data
///
/// * `null`: stores the index and payload of the null value, in this case the
/// second value (index 1)
///
/// ```text
/// ┌───────────────────────────────────┐ ┌─────┐ ┌────┐
/// │ ... │ │ 0 │ │FooB│
/// │ ┌──────────────────────────────┐ │ │ 0 │ │arTh│
/// │ │ <Entry for "Bar"> │ │ │ 3 │ │eQui│
/// │ │ len: 3 │ │ │ 3 │ │ckBr│
/// │ │ offset_or_inline: "Bar" │ │ │ 6 │ │ownF│
/// │ │ payload:... │ │ │ │ │ox │
/// │ └──────────────────────────────┘ │ │ │ │ │
/// │ ... │ └─────┘ └────┘
/// │ ┌──────────────────────────────┐ │
/// │ │<Entry for "TheQuickBrownFox">│ │ offsets buffer
/// │ │ len: 16 │ │
/// │ │ offset_or_inline: 6 │ │ ┌───────────────┐
/// │ │ payload: ... │ │ │ Some(1) │
/// │ └──────────────────────────────┘ │ │ payload: ... │
/// │ ... │ └───────────────┘
/// └───────────────────────────────────┘
/// null
/// HashTable
/// ```
///
/// # Entry Format
///
/// Entries stored in a [`ArrowBytesMap`] represents a value that is either
/// stored inline or in the buffer
///
/// This helps the case where there are many short (less than 8 bytes) strings
/// that are the same (e.g. "MA", "CA", "NY", "TX", etc)
///
/// ```text
/// ┌──────────────────┐
/// ─ ─ ─ ─ ─ ─ ─▶│... │
/// │ │TheQuickBrownFox │
/// │... │
/// │ │ │
/// └──────────────────┘
/// │ buffer of u8
///
/// │
/// ┌────────────────┬───────────────┬───────────────┐
/// Storing │ │ starting byte │ length, in │
/// "TheQuickBrownFox" │ hash value │ offset in │ bytes (not │
/// (long string) │ │ buffer │ characters) │
/// └────────────────┴───────────────┴───────────────┘
/// 8 bytes 8 bytes 4 or 8
///
///
/// ┌───────────────┬─┬─┬─┬─┬─┬─┬─┬─┬───────────────┐
/// Storing "foobar" │ │ │ │ │ │ │ │ │ │ length, in │
/// (short string) │ hash value │?│?│f│o│o│b│a│r│ bytes (not │
/// │ │ │ │ │ │ │ │ │ │ characters) │
/// └───────────────┴─┴─┴─┴─┴─┴─┴─┴─┴───────────────┘
/// 8 bytes 8 bytes 4 or 8
/// ```
pub struct ArrowBytesMap<O, V>
where
O: OffsetSizeTrait,
V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
/// Should the output be String or Binary?
output_type: OutputType,
/// Underlying hash set for each distinct value
map: hashbrown::raw::RawTable<Entry<O, V>>,
/// Total size of the map in bytes
map_size: usize,
/// In progress arrow `Buffer` containing all values
buffer: BufferBuilder<u8>,
/// Offsets into `buffer` for each distinct value. These offsets as used
/// directly to create the final `GenericBinaryArray`. The `i`th string is
/// stored in the range `offsets[i]..offsets[i+1]` in `buffer`. Null values
/// are stored as a zero length string.
offsets: Vec<O>,
/// random state used to generate hashes
random_state: RandomState,
/// buffer that stores hash values (reused across batches to save allocations)
hashes_buffer: Vec<u64>,
/// `(payload, null_index)` for the 'null' value, if any
/// NOTE null_index is the logical index in the final array, not the index
/// in the buffer
null: Option<(V, usize)>,
}
/// The size, in number of entries, of the initial hash table
const INITIAL_MAP_CAPACITY: usize = 128;
/// The initial size, in bytes, of the string data
pub const INITIAL_BUFFER_CAPACITY: usize = 8 * 1024;
impl<O: OffsetSizeTrait, V> ArrowBytesMap<O, V>
where
V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
pub fn new(output_type: OutputType) -> Self {
Self {
output_type,
map: hashbrown::raw::RawTable::with_capacity(INITIAL_MAP_CAPACITY),
map_size: 0,
buffer: BufferBuilder::new(INITIAL_BUFFER_CAPACITY),
offsets: vec![O::default()], // first offset is always 0
random_state: RandomState::new(),
hashes_buffer: vec![],
null: None,
}
}
/// Return the contents of this map and replace it with a new empty map with
/// the same output type
pub fn take(&mut self) -> Self {
let mut new_self = Self::new(self.output_type);
swap(self, &mut new_self);
new_self
}
/// Inserts each value from `values` into the map, invoking `payload_fn` for
/// each value if *not* already present, deferring the allocation of the
/// payload until it is needed.
///
/// Note that this is different than a normal map that would replace the
/// existing entry
///
/// # Arguments:
///
/// `values`: array whose values are inserted
///
/// `make_payload_fn`: invoked for each value that is not already present
/// to create the payload, in order of the values in `values`
///
/// `observe_payload_fn`: invoked once, for each value in `values`, that was
/// already present in the map, with corresponding payload value.
///
/// # Returns
///
/// The payload value for the entry, either the existing value or
/// the newly inserted value
///
/// # Safety:
///
/// Note that `make_payload_fn` and `observe_payload_fn` are only invoked
/// with valid values from `values`, not for the `NULL` value.
pub fn insert_if_new<MP, OP>(
&mut self,
values: &ArrayRef,
make_payload_fn: MP,
observe_payload_fn: OP,
) where
MP: FnMut(Option<&[u8]>) -> V,
OP: FnMut(V),
{
// Sanity array type
match self.output_type {
OutputType::Binary => {
assert!(matches!(
values.data_type(),
DataType::Binary | DataType::LargeBinary
));
self.insert_if_new_inner::<MP, OP, GenericBinaryType<O>>(
values,
make_payload_fn,
observe_payload_fn,
)
}
OutputType::Utf8 => {
assert!(matches!(
values.data_type(),
DataType::Utf8 | DataType::LargeUtf8
));
self.insert_if_new_inner::<MP, OP, GenericStringType<O>>(
values,
make_payload_fn,
observe_payload_fn,
)
}
_ => unreachable!("View types should use `ArrowBytesViewMap`"),
};
}
/// Generic version of [`Self::insert_if_new`] that handles `ByteArrayType`
/// (both String and Binary)
///
/// Note this is the only function that is generic on [`ByteArrayType`], which
/// avoids having to template the entire structure, making the code
/// simpler and understand and reducing code bloat due to duplication.
///
/// See comments on `insert_if_new` for more details
fn insert_if_new_inner<MP, OP, B>(
&mut self,
values: &ArrayRef,
mut make_payload_fn: MP,
mut observe_payload_fn: OP,
) where
MP: FnMut(Option<&[u8]>) -> V,
OP: FnMut(V),
B: ByteArrayType,
{
// step 1: compute hashes
let batch_hashes = &mut self.hashes_buffer;
batch_hashes.clear();
batch_hashes.resize(values.len(), 0);
create_hashes(&[values.clone()], &self.random_state, batch_hashes)
// hash is supported for all types and create_hashes only
// returns errors for unsupported types
.unwrap();
// step 2: insert each value into the set, if not already present
let values = values.as_bytes::<B>();
// Ensure lengths are equivalent
assert_eq!(values.len(), batch_hashes.len());
for (value, &hash) in values.iter().zip(batch_hashes.iter()) {
// handle null value
let Some(value) = value else {
let payload = if let Some(&(payload, _offset)) = self.null.as_ref() {
payload
} else {
let payload = make_payload_fn(None);
let null_index = self.offsets.len() - 1;
// nulls need a zero length in the offset buffer
let offset = self.buffer.len();
self.offsets.push(O::usize_as(offset));
self.null = Some((payload, null_index));
payload
};
observe_payload_fn(payload);
continue;
};
// get the value as bytes
let value: &[u8] = value.as_ref();
let value_len = O::usize_as(value.len());
// value is "small"
let payload = if value.len() <= SHORT_VALUE_LEN {
let inline = value.iter().fold(0usize, |acc, &x| acc << 8 | x as usize);
// is value is already present in the set?
let entry = self.map.get_mut(hash, |header| {
// compare value if hashes match
if header.len != value_len {
return false;
}
// value is stored inline so no need to consult buffer
// (this is the "small string optimization")
inline == header.offset_or_inline
});
if let Some(entry) = entry {
entry.payload
}
// if no existing entry, make a new one
else {
// Put the small values into buffer and offsets so it appears
// the output array, but store the actual bytes inline for
// comparison
self.buffer.append_slice(value);
self.offsets.push(O::usize_as(self.buffer.len()));
let payload = make_payload_fn(Some(value));
let new_header = Entry {
hash,
len: value_len,
offset_or_inline: inline,
payload,
};
self.map.insert_accounted(
new_header,
|header| header.hash,
&mut self.map_size,
);
payload
}
}
// value is not "small"
else {
// Check if the value is already present in the set
let entry = self.map.get_mut(hash, |header| {
// compare value if hashes match
if header.len != value_len {
return false;
}
// Need to compare the bytes in the buffer
// SAFETY: buffer is only appended to, and we correctly inserted values and offsets
let existing_value =
unsafe { self.buffer.as_slice().get_unchecked(header.range()) };
value == existing_value
});
if let Some(entry) = entry {
entry.payload
}
// if no existing entry, make a new one
else {
// Put the small values into buffer and offsets so it
// appears the output array, and store that offset
// so the bytes can be compared if needed
let offset = self.buffer.len(); // offset of start for data
self.buffer.append_slice(value);
self.offsets.push(O::usize_as(self.buffer.len()));
let payload = make_payload_fn(Some(value));
let new_header = Entry {
hash,
len: value_len,
offset_or_inline: offset,
payload,
};
self.map.insert_accounted(
new_header,
|header| header.hash,
&mut self.map_size,
);
payload
}
};
observe_payload_fn(payload);
}
// Check for overflow in offsets (if more data was sent than can be represented)
if O::from_usize(self.buffer.len()).is_none() {
panic!(
"Put {} bytes in buffer, more than can be represented by a {}",
self.buffer.len(),
type_name::<O>()
);
}
}
/// Converts this set into a `StringArray`, `LargeStringArray`,
/// `BinaryArray`, or `LargeBinaryArray` containing each distinct value
/// that was inserted. This is done without copying the values.
///
/// The values are guaranteed to be returned in the same order in which
/// they were first seen.
pub fn into_state(self) -> ArrayRef {
let Self {
output_type,
map: _,
map_size: _,
offsets,
mut buffer,
random_state: _,
hashes_buffer: _,
null,
} = self;
// Only make a `NullBuffer` if there was a null value
let nulls = null.map(|(_payload, null_index)| {
let num_values = offsets.len() - 1;
single_null_buffer(num_values, null_index)
});
// SAFETY: the offsets were constructed correctly in `insert_if_new` --
// monotonically increasing, overflows were checked.
let offsets = unsafe { OffsetBuffer::new_unchecked(ScalarBuffer::from(offsets)) };
let values = buffer.finish();
match output_type {
OutputType::Binary => {
// SAFETY: the offsets were constructed correctly
Arc::new(unsafe {
GenericBinaryArray::new_unchecked(offsets, values, nulls)
})
}
OutputType::Utf8 => {
// SAFETY:
// 1. the offsets were constructed safely
//
// 2. we asserted the input arrays were all the correct type and
// thus since all the values that went in were valid (e.g. utf8)
// so are all the values that come out
Arc::new(unsafe {
GenericStringArray::new_unchecked(offsets, values, nulls)
})
}
_ => unreachable!("View types should use `ArrowBytesViewMap`"),
}
}
/// Total number of entries (including null, if present)
pub fn len(&self) -> usize {
self.non_null_len() + self.null.map(|_| 1).unwrap_or(0)
}
/// Is the set empty?
pub fn is_empty(&self) -> bool {
self.map.is_empty() && self.null.is_none()
}
/// Number of non null entries
pub fn non_null_len(&self) -> usize {
self.map.len()
}
/// Return the total size, in bytes, of memory used to store the data in
/// this set, not including `self`
pub fn size(&self) -> usize {
self.map_size
+ self.buffer.capacity() * size_of::<u8>()
+ self.offsets.allocated_size()
+ self.hashes_buffer.allocated_size()
}
}
/// Returns a `NullBuffer` with a single null value at the given index
fn single_null_buffer(num_values: usize, null_index: usize) -> NullBuffer {
let mut bool_builder = BooleanBufferBuilder::new(num_values);
bool_builder.append_n(num_values, true);
bool_builder.set_bit(null_index, false);
NullBuffer::from(bool_builder.finish())
}
impl<O: OffsetSizeTrait, V> Debug for ArrowBytesMap<O, V>
where
V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ArrowBytesMap")
.field("map", &"<map>")
.field("map_size", &self.map_size)
.field("buffer", &self.buffer)
.field("random_state", &self.random_state)
.field("hashes_buffer", &self.hashes_buffer)
.finish()
}
}
/// Maximum size of a value that can be inlined in the hash table
const SHORT_VALUE_LEN: usize = size_of::<usize>();
/// Entry in the hash table -- see [`ArrowBytesMap`] for more details
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct Entry<O, V>
where
O: OffsetSizeTrait,
V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
/// hash of the value (stored to avoid recomputing it in hash table check)
hash: u64,
/// if len =< [`SHORT_VALUE_LEN`]: the data inlined
/// if len > [`SHORT_VALUE_LEN`], the offset of where the data starts
offset_or_inline: usize,
/// length of the value, in bytes (use O here so we use only i32 for
/// strings, rather 64 bit usize)
len: O,
/// value stored by the entry
payload: V,
}
impl<O, V> Entry<O, V>
where
O: OffsetSizeTrait,
V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
/// returns self.offset..self.offset + self.len
#[inline(always)]
fn range(&self) -> Range<usize> {
self.offset_or_inline..self.offset_or_inline + self.len.as_usize()
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::array::{BinaryArray, LargeBinaryArray, StringArray};
use std::collections::HashMap;
#[test]
fn string_set_empty() {
let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
let array: ArrayRef = Arc::new(StringArray::new_null(0));
set.insert(&array);
assert_eq!(set.len(), 0);
assert_eq!(set.non_null_len(), 0);
assert_set(set, &[]);
}
#[test]
fn string_set_one_null() {
let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
let array: ArrayRef = Arc::new(StringArray::new_null(1));
set.insert(&array);
assert_eq!(set.len(), 1);
assert_eq!(set.non_null_len(), 0);
assert_set(set, &[None]);
}
#[test]
fn string_set_many_null() {
let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
let array: ArrayRef = Arc::new(StringArray::new_null(11));
set.insert(&array);
assert_eq!(set.len(), 1);
assert_eq!(set.non_null_len(), 0);
assert_set(set, &[None]);
}
#[test]
fn string_set_basic_i32() {
test_string_set_basic::<i32>();
}
#[test]
fn string_set_basic_i64() {
test_string_set_basic::<i64>();
}
fn test_string_set_basic<O: OffsetSizeTrait>() {
// basic test for mixed small and large string values
let values = GenericStringArray::<O>::from(vec![
Some("a"),
Some("b"),
Some("CXCCCCCCCC"), // 10 bytes
Some(""),
Some("cbcxx"), // 5 bytes
None,
Some("AAAAAAAA"), // 8 bytes
Some("BBBBBQBBB"), // 9 bytes
Some("a"),
Some("cbcxx"),
Some("b"),
Some("cbcxx"),
Some(""),
None,
Some("BBBBBQBBB"),
Some("BBBBBQBBB"),
Some("AAAAAAAA"),
Some("CXCCCCCCCC"),
]);
let mut set = ArrowBytesSet::<O>::new(OutputType::Utf8);
let array: ArrayRef = Arc::new(values);
set.insert(&array);
// values mut appear be in the order they were inserted
assert_set(
set,
&[
Some("a"),
Some("b"),
Some("CXCCCCCCCC"),
Some(""),
Some("cbcxx"),
None,
Some("AAAAAAAA"),
Some("BBBBBQBBB"),
],
);
}
#[test]
fn string_set_non_utf8_32() {
test_string_set_non_utf8::<i32>();
}
#[test]
fn string_set_non_utf8_64() {
test_string_set_non_utf8::<i64>();
}
fn test_string_set_non_utf8<O: OffsetSizeTrait>() {
// basic test for mixed small and large string values
let values = GenericStringArray::<O>::from(vec![
Some("a"),
Some("✨🔥"),
Some("🔥"),
Some("✨✨✨"),
Some("foobarbaz"),
Some("🔥"),
Some("✨🔥"),
]);
let mut set = ArrowBytesSet::<O>::new(OutputType::Utf8);
let array: ArrayRef = Arc::new(values);
set.insert(&array);
// strings mut appear be in the order they were inserted
assert_set(
set,
&[
Some("a"),
Some("✨🔥"),
Some("🔥"),
Some("✨✨✨"),
Some("foobarbaz"),
],
);
}
// asserts that the set contains the expected strings, in the same order
fn assert_set<O: OffsetSizeTrait>(set: ArrowBytesSet<O>, expected: &[Option<&str>]) {
let strings = set.into_state();
let strings = strings.as_string::<O>();
let state = strings.into_iter().collect::<Vec<_>>();
assert_eq!(state, expected);
}
// Test use of binary output type
#[test]
fn test_binary_set() {
let values: ArrayRef = Arc::new(BinaryArray::from_opt_vec(vec![
Some(b"a"),
Some(b"CXCCCCCCCC"),
None,
Some(b"CXCCCCCCCC"),
]));
let expected: ArrayRef = Arc::new(BinaryArray::from_opt_vec(vec![
Some(b"a"),
Some(b"CXCCCCCCCC"),
None,
]));
let mut set = ArrowBytesSet::<i32>::new(OutputType::Binary);
set.insert(&values);
assert_eq!(&set.into_state(), &expected);
}
// Test use of binary output type
#[test]
fn test_large_binary_set() {
let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![
Some(b"a"),
Some(b"CXCCCCCCCC"),
None,
Some(b"CXCCCCCCCC"),
]));
let expected: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![
Some(b"a"),
Some(b"CXCCCCCCCC"),
None,
]));
let mut set = ArrowBytesSet::<i64>::new(OutputType::Binary);
set.insert(&values);
assert_eq!(&set.into_state(), &expected);
}
#[test]
#[should_panic(
expected = "matches!(values.data_type(), DataType::Utf8 | DataType::LargeUtf8)"
)]
fn test_mismatched_types() {
// inserting binary into a set that expects strings should panic
let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![Some(b"a")]));
let mut set = ArrowBytesSet::<i64>::new(OutputType::Utf8);
set.insert(&values);
}
#[test]
#[should_panic]
fn test_mismatched_sizes() {
// inserting large strings into a set that expects small should panic
let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![Some(b"a")]));
let mut set = ArrowBytesSet::<i32>::new(OutputType::Binary);
set.insert(&values);
}
// put more than 2GB in a string set and expect it to panic
#[test]
#[should_panic(
expected = "Put 2147483648 bytes in buffer, more than can be represented by a i32"
)]
fn test_string_overflow() {
let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
for value in ["a", "b", "c"] {
// 1GB strings, so 3rd is over 2GB and should panic
let arr: ArrayRef =
Arc::new(StringArray::from_iter_values([value.repeat(1 << 30)]));
set.insert(&arr);
}
}
// inserting strings into the set does not increase reported memory
#[test]
fn test_string_set_memory_usage() {
let strings1 = GenericStringArray::<i32>::from(vec![
Some("a"),
Some("b"),
Some("CXCCCCCCCC"), // 10 bytes
Some("AAAAAAAA"), // 8 bytes
Some("BBBBBQBBB"), // 9 bytes
]);
let total_strings1_len = strings1
.iter()
.map(|s| s.map(|s| s.len()).unwrap_or(0))
.sum::<usize>();
let values1: ArrayRef = Arc::new(GenericStringArray::<i32>::from(strings1));
// Much larger strings in strings2
let strings2 = GenericStringArray::<i32>::from(vec![
"FOO".repeat(1000),
"BAR".repeat(2000),
"BAZ".repeat(3000),
]);
let total_strings2_len = strings2
.iter()
.map(|s| s.map(|s| s.len()).unwrap_or(0))
.sum::<usize>();
let values2: ArrayRef = Arc::new(GenericStringArray::<i32>::from(strings2));
let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
let size_empty = set.size();
set.insert(&values1);
let size_after_values1 = set.size();
assert!(size_empty < size_after_values1);
assert!(
size_after_values1 > total_strings1_len,
"expect {size_after_values1} to be more than {total_strings1_len}"
);
assert!(size_after_values1 < total_strings1_len + total_strings2_len);
// inserting the same strings should not affect the size
set.insert(&values1);
assert_eq!(set.size(), size_after_values1);
// inserting the large strings should increase the reported size
set.insert(&values2);
let size_after_values2 = set.size();
assert!(size_after_values2 > size_after_values1);
assert!(size_after_values2 > total_strings1_len + total_strings2_len);
}
#[test]
fn test_map() {
let input = vec![
// Note mix of short/long strings
Some("A"),
Some("bcdefghijklmnop"),
Some("X"),
Some("Y"),
None,
Some("qrstuvqxyzhjwya"),
Some("✨🔥"),
Some("🔥"),
Some("🔥🔥🔥🔥🔥🔥"),
];
let mut test_map = TestMap::new();
test_map.insert(&input);
test_map.insert(&input); // put it in twice
let expected_output: ArrayRef = Arc::new(StringArray::from(input));
assert_eq!(&test_map.into_array(), &expected_output);
}
#[derive(Debug, PartialEq, Eq, Default, Clone, Copy)]
struct TestPayload {
// store the string value to check against input
index: usize, // store the index of the string (each new string gets the next sequential input)
}
/// Wraps an [`ArrowBytesMap`], validating its invariants
struct TestMap {
map: ArrowBytesMap<i32, TestPayload>,
// stores distinct strings seen, in order
strings: Vec<Option<String>>,
// map strings to index in strings
indexes: HashMap<Option<String>, usize>,
}
impl Debug for TestMap {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TestMap")
.field("map", &"...")
.field("strings", &self.strings)
.field("indexes", &self.indexes)
.finish()
}
}
impl TestMap {
/// creates a map with TestPayloads for the given strings and then
/// validates the payloads
fn new() -> Self {
Self {
map: ArrowBytesMap::new(OutputType::Utf8),
strings: vec![],
indexes: HashMap::new(),
}
}
/// Inserts strings into the map
fn insert(&mut self, strings: &[Option<&str>]) {
let string_array = StringArray::from(strings.to_vec());
let arr: ArrayRef = Arc::new(string_array);
let mut next_index = self.indexes.len();
let mut actual_new_strings = vec![];
let mut actual_seen_indexes = vec![];
// update self with new values, keeping track of newly added values
for str in strings {
let str = str.map(|s| s.to_string());
let index = self.indexes.get(&str).cloned().unwrap_or_else(|| {
actual_new_strings.push(str.clone());
let index = self.strings.len();
self.strings.push(str.clone());
self.indexes.insert(str, index);
index
});
actual_seen_indexes.push(index);
}
// insert the values into the map, recording what we did
let mut seen_new_strings = vec![];
let mut seen_indexes = vec![];
self.map.insert_if_new(
&arr,
|s| {
let value = s
.map(|s| String::from_utf8(s.to_vec()).expect("Non utf8 string"));
let index = next_index;
next_index += 1;
seen_new_strings.push(value);
TestPayload { index }
},
|payload| {
seen_indexes.push(payload.index);
},
);
assert_eq!(actual_seen_indexes, seen_indexes);
assert_eq!(actual_new_strings, seen_new_strings);
}
/// Call `self.map.into_array()` validating that the strings are in the same
/// order as they were inserted
fn into_array(self) -> ArrayRef {
let Self {
map,
strings,
indexes: _,
} = self;
let arr = map.into_state();
let expected: ArrayRef = Arc::new(StringArray::from(strings));
assert_eq!(&arr, &expected);
arr
}
}
}