datafusion_physical_expr_common/
binary_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`ArrowBytesMap`] and [`ArrowBytesSet`] for storing maps/sets of values from
//! StringArray / LargeStringArray / BinaryArray / LargeBinaryArray.

use ahash::RandomState;
use arrow::array::cast::AsArray;
use arrow::array::types::{ByteArrayType, GenericBinaryType, GenericStringType};
use arrow::array::{
    Array, ArrayRef, BooleanBufferBuilder, BufferBuilder, GenericBinaryArray,
    GenericStringArray, OffsetSizeTrait,
};
use arrow::buffer::{NullBuffer, OffsetBuffer, ScalarBuffer};
use arrow::datatypes::DataType;
use datafusion_common::hash_utils::create_hashes;
use datafusion_common::utils::proxy::{RawTableAllocExt, VecAllocExt};
use std::any::type_name;
use std::fmt::Debug;
use std::mem::{size_of, swap};
use std::ops::Range;
use std::sync::Arc;

/// Should the output be a String or Binary?
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum OutputType {
    /// `StringArray` or `LargeStringArray`
    Utf8,
    /// `StringViewArray`
    Utf8View,
    /// `BinaryArray` or `LargeBinaryArray`
    Binary,
    /// `BinaryViewArray`
    BinaryView,
}

/// HashSet optimized for storing string or binary values that can produce that
/// the final set as a GenericStringArray with minimal copies.
#[derive(Debug)]
pub struct ArrowBytesSet<O: OffsetSizeTrait>(ArrowBytesMap<O, ()>);

impl<O: OffsetSizeTrait> ArrowBytesSet<O> {
    pub fn new(output_type: OutputType) -> Self {
        Self(ArrowBytesMap::new(output_type))
    }

    /// Return the contents of this set and replace it with a new empty
    /// set with the same output type
    pub fn take(&mut self) -> Self {
        Self(self.0.take())
    }

    /// Inserts each value from `values` into the set
    pub fn insert(&mut self, values: &ArrayRef) {
        fn make_payload_fn(_value: Option<&[u8]>) {}
        fn observe_payload_fn(_payload: ()) {}
        self.0
            .insert_if_new(values, make_payload_fn, observe_payload_fn);
    }

    /// Converts this set into a `StringArray`/`LargeStringArray` or
    /// `BinaryArray`/`LargeBinaryArray` containing each distinct value that
    /// was interned. This is done without copying the values.
    pub fn into_state(self) -> ArrayRef {
        self.0.into_state()
    }

    /// Returns the total number of distinct values (including nulls) seen so far
    pub fn len(&self) -> usize {
        self.0.len()
    }

    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// returns the total number of distinct values (not including nulls) seen so far
    pub fn non_null_len(&self) -> usize {
        self.0.non_null_len()
    }

    /// Return the total size, in bytes, of memory used to store the data in
    /// this set, not including `self`
    pub fn size(&self) -> usize {
        self.0.size()
    }
}

/// Optimized map for storing Arrow "bytes" types (`String`, `LargeString`,
/// `Binary`, and `LargeBinary`) values that can produce the set of keys on
/// output as `GenericBinaryArray` without copies.
///
/// Equivalent to `HashSet<String, V>` but with better performance if you need
/// to emit the keys as an Arrow `StringArray` / `BinaryArray`. For other
/// purposes it is the same as a `HashMap<String, V>`
///
/// # Generic Arguments
///
/// * `O`: OffsetSize (String/LargeString)
/// * `V`: payload type
///
/// # Description
///
/// This is a specialized HashMap with the following properties:
///
/// 1. Optimized for storing and emitting Arrow byte types  (e.g.
///    `StringArray` / `BinaryArray`) very efficiently by minimizing copying of
///    the string values themselves, both when inserting and when emitting the
///    final array.
///
///
/// 2. Retains the insertion order of entries in the final array. The values are
///    in the same order as they were inserted.
///
/// Note this structure can be used as a `HashSet` by specifying the value type
/// as `()`, as is done by [`ArrowBytesSet`].
///
/// This map is used by the special `COUNT DISTINCT` aggregate function to
/// store the distinct values, and by the `GROUP BY` operator to store
/// group values when they are a single string array.
///
/// # Example
///
/// The following diagram shows how the map would store the four strings
/// "Foo", NULL, "Bar", "TheQuickBrownFox":
///
/// * `hashtable` stores entries for each distinct string that has been
///   inserted. The entries contain the payload as well as information about the
///   value (either an offset or the actual bytes, see `Entry` docs for more
///   details)
///
/// * `offsets` stores offsets into `buffer` for each distinct string value,
///   following the same convention as the offsets in a `StringArray` or
///   `LargeStringArray`.
///
/// * `buffer` stores the actual byte data
///
/// * `null`: stores the index and payload of the null value, in this case the
///   second value (index 1)
///
/// ```text
/// ┌───────────────────────────────────┐    ┌─────┐    ┌────┐
/// │                ...                │    │  0  │    │FooB│
/// │ ┌──────────────────────────────┐  │    │  0  │    │arTh│
/// │ │      <Entry for "Bar">       │  │    │  3  │    │eQui│
/// │ │            len: 3            │  │    │  3  │    │ckBr│
/// │ │   offset_or_inline: "Bar"    │  │    │  6  │    │ownF│
/// │ │         payload:...          │  │    │     │    │ox  │
/// │ └──────────────────────────────┘  │    │     │    │    │
/// │                ...                │    └─────┘    └────┘
/// │ ┌──────────────────────────────┐  │
/// │ │<Entry for "TheQuickBrownFox">│  │    offsets    buffer
/// │ │           len: 16            │  │
/// │ │     offset_or_inline: 6      │  │    ┌───────────────┐
/// │ │         payload: ...         │  │    │    Some(1)    │
/// │ └──────────────────────────────┘  │    │ payload: ...  │
/// │                ...                │    └───────────────┘
/// └───────────────────────────────────┘
///                                              null
///               HashTable
/// ```
///
/// # Entry Format
///
/// Entries stored in a [`ArrowBytesMap`] represents a value that is either
/// stored inline or in the buffer
///
/// This helps the case where there are many short (less than 8 bytes) strings
/// that are the same (e.g. "MA", "CA", "NY", "TX", etc)
///
/// ```text
///                                                                ┌──────────────────┐
///                                                  ─ ─ ─ ─ ─ ─ ─▶│...               │
///                                                 │              │TheQuickBrownFox  │
///                                                                │...               │
///                                                 │              │                  │
///                                                                └──────────────────┘
///                                                 │               buffer of u8
///
///                                                 │
///                        ┌────────────────┬───────────────┬───────────────┐
///  Storing               │                │ starting byte │  length, in   │
///  "TheQuickBrownFox"    │   hash value   │   offset in   │  bytes (not   │
///  (long string)         │                │    buffer     │  characters)  │
///                        └────────────────┴───────────────┴───────────────┘
///                              8 bytes          8 bytes       4 or 8
///
///
///                         ┌───────────────┬─┬─┬─┬─┬─┬─┬─┬─┬───────────────┐
/// Storing "foobar"        │               │ │ │ │ │ │ │ │ │  length, in   │
/// (short string)          │  hash value   │?│?│f│o│o│b│a│r│  bytes (not   │
///                         │               │ │ │ │ │ │ │ │ │  characters)  │
///                         └───────────────┴─┴─┴─┴─┴─┴─┴─┴─┴───────────────┘
///                              8 bytes         8 bytes        4 or 8
/// ```
pub struct ArrowBytesMap<O, V>
where
    O: OffsetSizeTrait,
    V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
    /// Should the output be String or Binary?
    output_type: OutputType,
    /// Underlying hash set for each distinct value
    map: hashbrown::raw::RawTable<Entry<O, V>>,
    /// Total size of the map in bytes
    map_size: usize,
    /// In progress arrow `Buffer` containing all values
    buffer: BufferBuilder<u8>,
    /// Offsets into `buffer` for each distinct  value. These offsets as used
    /// directly to create the final `GenericBinaryArray`. The `i`th string is
    /// stored in the range `offsets[i]..offsets[i+1]` in `buffer`. Null values
    /// are stored as a zero length string.
    offsets: Vec<O>,
    /// random state used to generate hashes
    random_state: RandomState,
    /// buffer that stores hash values (reused across batches to save allocations)
    hashes_buffer: Vec<u64>,
    /// `(payload, null_index)` for the 'null' value, if any
    /// NOTE null_index is the logical index in the final array, not the index
    /// in the buffer
    null: Option<(V, usize)>,
}

/// The size, in number of entries, of the initial hash table
const INITIAL_MAP_CAPACITY: usize = 128;
/// The initial size, in bytes, of the string data
pub const INITIAL_BUFFER_CAPACITY: usize = 8 * 1024;
impl<O: OffsetSizeTrait, V> ArrowBytesMap<O, V>
where
    V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
    pub fn new(output_type: OutputType) -> Self {
        Self {
            output_type,
            map: hashbrown::raw::RawTable::with_capacity(INITIAL_MAP_CAPACITY),
            map_size: 0,
            buffer: BufferBuilder::new(INITIAL_BUFFER_CAPACITY),
            offsets: vec![O::default()], // first offset is always 0
            random_state: RandomState::new(),
            hashes_buffer: vec![],
            null: None,
        }
    }

    /// Return the contents of this map and replace it with a new empty map with
    /// the same output type
    pub fn take(&mut self) -> Self {
        let mut new_self = Self::new(self.output_type);
        swap(self, &mut new_self);
        new_self
    }

    /// Inserts each value from `values` into the map, invoking `payload_fn` for
    /// each value if *not* already present, deferring the allocation of the
    /// payload until it is needed.
    ///
    /// Note that this is different than a normal map that would replace the
    /// existing entry
    ///
    /// # Arguments:
    ///
    /// `values`: array whose values are inserted
    ///
    /// `make_payload_fn`:  invoked for each value that is not already present
    /// to create the payload, in order of the values in `values`
    ///
    /// `observe_payload_fn`: invoked once, for each value in `values`, that was
    /// already present in the map, with corresponding payload value.
    ///
    /// # Returns
    ///
    /// The payload value for the entry, either the existing value or
    /// the newly inserted value
    ///
    /// # Safety:
    ///
    /// Note that `make_payload_fn` and `observe_payload_fn` are only invoked
    /// with valid values from `values`, not for the `NULL` value.
    pub fn insert_if_new<MP, OP>(
        &mut self,
        values: &ArrayRef,
        make_payload_fn: MP,
        observe_payload_fn: OP,
    ) where
        MP: FnMut(Option<&[u8]>) -> V,
        OP: FnMut(V),
    {
        // Sanity array type
        match self.output_type {
            OutputType::Binary => {
                assert!(matches!(
                    values.data_type(),
                    DataType::Binary | DataType::LargeBinary
                ));
                self.insert_if_new_inner::<MP, OP, GenericBinaryType<O>>(
                    values,
                    make_payload_fn,
                    observe_payload_fn,
                )
            }
            OutputType::Utf8 => {
                assert!(matches!(
                    values.data_type(),
                    DataType::Utf8 | DataType::LargeUtf8
                ));
                self.insert_if_new_inner::<MP, OP, GenericStringType<O>>(
                    values,
                    make_payload_fn,
                    observe_payload_fn,
                )
            }
            _ => unreachable!("View types should use `ArrowBytesViewMap`"),
        };
    }

    /// Generic version of [`Self::insert_if_new`] that handles `ByteArrayType`
    /// (both String and Binary)
    ///
    /// Note this is the only function that is generic on [`ByteArrayType`], which
    /// avoids having to template the entire structure,  making the code
    /// simpler and understand and reducing code bloat due to duplication.
    ///
    /// See comments on `insert_if_new` for more details
    fn insert_if_new_inner<MP, OP, B>(
        &mut self,
        values: &ArrayRef,
        mut make_payload_fn: MP,
        mut observe_payload_fn: OP,
    ) where
        MP: FnMut(Option<&[u8]>) -> V,
        OP: FnMut(V),
        B: ByteArrayType,
    {
        // step 1: compute hashes
        let batch_hashes = &mut self.hashes_buffer;
        batch_hashes.clear();
        batch_hashes.resize(values.len(), 0);
        create_hashes(&[values.clone()], &self.random_state, batch_hashes)
            // hash is supported for all types and create_hashes only
            // returns errors for unsupported types
            .unwrap();

        // step 2: insert each value into the set, if not already present
        let values = values.as_bytes::<B>();

        // Ensure lengths are equivalent
        assert_eq!(values.len(), batch_hashes.len());

        for (value, &hash) in values.iter().zip(batch_hashes.iter()) {
            // handle null value
            let Some(value) = value else {
                let payload = if let Some(&(payload, _offset)) = self.null.as_ref() {
                    payload
                } else {
                    let payload = make_payload_fn(None);
                    let null_index = self.offsets.len() - 1;
                    // nulls need a zero length in the offset buffer
                    let offset = self.buffer.len();
                    self.offsets.push(O::usize_as(offset));
                    self.null = Some((payload, null_index));
                    payload
                };
                observe_payload_fn(payload);
                continue;
            };

            // get the value as bytes
            let value: &[u8] = value.as_ref();
            let value_len = O::usize_as(value.len());

            // value is "small"
            let payload = if value.len() <= SHORT_VALUE_LEN {
                let inline = value.iter().fold(0usize, |acc, &x| acc << 8 | x as usize);

                // is value is already present in the set?
                let entry = self.map.get_mut(hash, |header| {
                    // compare value if hashes match
                    if header.len != value_len {
                        return false;
                    }
                    // value is stored inline so no need to consult buffer
                    // (this is the "small string optimization")
                    inline == header.offset_or_inline
                });

                if let Some(entry) = entry {
                    entry.payload
                }
                // if no existing entry, make a new one
                else {
                    // Put the small values into buffer and offsets so it appears
                    // the output array, but store the actual bytes inline for
                    // comparison
                    self.buffer.append_slice(value);
                    self.offsets.push(O::usize_as(self.buffer.len()));
                    let payload = make_payload_fn(Some(value));
                    let new_header = Entry {
                        hash,
                        len: value_len,
                        offset_or_inline: inline,
                        payload,
                    };
                    self.map.insert_accounted(
                        new_header,
                        |header| header.hash,
                        &mut self.map_size,
                    );
                    payload
                }
            }
            // value is not "small"
            else {
                // Check if the value is already present in the set
                let entry = self.map.get_mut(hash, |header| {
                    // compare value if hashes match
                    if header.len != value_len {
                        return false;
                    }
                    // Need to compare the bytes in the buffer
                    // SAFETY: buffer is only appended to, and we correctly inserted values and offsets
                    let existing_value =
                        unsafe { self.buffer.as_slice().get_unchecked(header.range()) };
                    value == existing_value
                });

                if let Some(entry) = entry {
                    entry.payload
                }
                // if no existing entry, make a new one
                else {
                    // Put the small values into buffer and offsets so it
                    // appears the output array, and store that offset
                    // so the bytes can be compared if needed
                    let offset = self.buffer.len(); // offset of start for data
                    self.buffer.append_slice(value);
                    self.offsets.push(O::usize_as(self.buffer.len()));

                    let payload = make_payload_fn(Some(value));
                    let new_header = Entry {
                        hash,
                        len: value_len,
                        offset_or_inline: offset,
                        payload,
                    };
                    self.map.insert_accounted(
                        new_header,
                        |header| header.hash,
                        &mut self.map_size,
                    );
                    payload
                }
            };
            observe_payload_fn(payload);
        }
        // Check for overflow in offsets (if more data was sent than can be represented)
        if O::from_usize(self.buffer.len()).is_none() {
            panic!(
                "Put {} bytes in buffer, more than can be represented by a {}",
                self.buffer.len(),
                type_name::<O>()
            );
        }
    }

    /// Converts this set into a `StringArray`, `LargeStringArray`,
    /// `BinaryArray`, or `LargeBinaryArray` containing each distinct value
    /// that was inserted. This is done without copying the values.
    ///
    /// The values are guaranteed to be returned in the same order in which
    /// they were first seen.
    pub fn into_state(self) -> ArrayRef {
        let Self {
            output_type,
            map: _,
            map_size: _,
            offsets,
            mut buffer,
            random_state: _,
            hashes_buffer: _,
            null,
        } = self;

        // Only make a `NullBuffer` if there was a null value
        let nulls = null.map(|(_payload, null_index)| {
            let num_values = offsets.len() - 1;
            single_null_buffer(num_values, null_index)
        });
        // SAFETY: the offsets were constructed correctly in `insert_if_new` --
        // monotonically increasing, overflows were checked.
        let offsets = unsafe { OffsetBuffer::new_unchecked(ScalarBuffer::from(offsets)) };
        let values = buffer.finish();

        match output_type {
            OutputType::Binary => {
                // SAFETY: the offsets were constructed correctly
                Arc::new(unsafe {
                    GenericBinaryArray::new_unchecked(offsets, values, nulls)
                })
            }
            OutputType::Utf8 => {
                // SAFETY:
                // 1. the offsets were constructed safely
                //
                // 2. we asserted the input arrays were all the correct type and
                // thus since all the values that went in were valid (e.g. utf8)
                // so are all the values that come out
                Arc::new(unsafe {
                    GenericStringArray::new_unchecked(offsets, values, nulls)
                })
            }
            _ => unreachable!("View types should use `ArrowBytesViewMap`"),
        }
    }

    /// Total number of entries (including null, if present)
    pub fn len(&self) -> usize {
        self.non_null_len() + self.null.map(|_| 1).unwrap_or(0)
    }

    /// Is the set empty?
    pub fn is_empty(&self) -> bool {
        self.map.is_empty() && self.null.is_none()
    }

    /// Number of non null entries
    pub fn non_null_len(&self) -> usize {
        self.map.len()
    }

    /// Return the total size, in bytes, of memory used to store the data in
    /// this set, not including `self`
    pub fn size(&self) -> usize {
        self.map_size
            + self.buffer.capacity() * size_of::<u8>()
            + self.offsets.allocated_size()
            + self.hashes_buffer.allocated_size()
    }
}

/// Returns a `NullBuffer` with a single null value at the given index
fn single_null_buffer(num_values: usize, null_index: usize) -> NullBuffer {
    let mut bool_builder = BooleanBufferBuilder::new(num_values);
    bool_builder.append_n(num_values, true);
    bool_builder.set_bit(null_index, false);
    NullBuffer::from(bool_builder.finish())
}

impl<O: OffsetSizeTrait, V> Debug for ArrowBytesMap<O, V>
where
    V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ArrowBytesMap")
            .field("map", &"<map>")
            .field("map_size", &self.map_size)
            .field("buffer", &self.buffer)
            .field("random_state", &self.random_state)
            .field("hashes_buffer", &self.hashes_buffer)
            .finish()
    }
}

/// Maximum size of a value that can be inlined in the hash table
const SHORT_VALUE_LEN: usize = size_of::<usize>();

/// Entry in the hash table -- see [`ArrowBytesMap`] for more details
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct Entry<O, V>
where
    O: OffsetSizeTrait,
    V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
    /// hash of the value (stored to avoid recomputing it in hash table check)
    hash: u64,
    /// if len =< [`SHORT_VALUE_LEN`]: the data inlined
    /// if len > [`SHORT_VALUE_LEN`], the offset of where the data starts
    offset_or_inline: usize,
    /// length of the value, in bytes (use O here so we use only i32 for
    /// strings, rather 64 bit usize)
    len: O,
    /// value stored by the entry
    payload: V,
}

impl<O, V> Entry<O, V>
where
    O: OffsetSizeTrait,
    V: Debug + PartialEq + Eq + Clone + Copy + Default,
{
    /// returns self.offset..self.offset + self.len
    #[inline(always)]
    fn range(&self) -> Range<usize> {
        self.offset_or_inline..self.offset_or_inline + self.len.as_usize()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow::array::{BinaryArray, LargeBinaryArray, StringArray};
    use std::collections::HashMap;

    #[test]
    fn string_set_empty() {
        let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
        let array: ArrayRef = Arc::new(StringArray::new_null(0));
        set.insert(&array);
        assert_eq!(set.len(), 0);
        assert_eq!(set.non_null_len(), 0);
        assert_set(set, &[]);
    }

    #[test]
    fn string_set_one_null() {
        let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
        let array: ArrayRef = Arc::new(StringArray::new_null(1));
        set.insert(&array);
        assert_eq!(set.len(), 1);
        assert_eq!(set.non_null_len(), 0);
        assert_set(set, &[None]);
    }

    #[test]
    fn string_set_many_null() {
        let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
        let array: ArrayRef = Arc::new(StringArray::new_null(11));
        set.insert(&array);
        assert_eq!(set.len(), 1);
        assert_eq!(set.non_null_len(), 0);
        assert_set(set, &[None]);
    }

    #[test]
    fn string_set_basic_i32() {
        test_string_set_basic::<i32>();
    }

    #[test]
    fn string_set_basic_i64() {
        test_string_set_basic::<i64>();
    }

    fn test_string_set_basic<O: OffsetSizeTrait>() {
        // basic test for mixed small and large string values
        let values = GenericStringArray::<O>::from(vec![
            Some("a"),
            Some("b"),
            Some("CXCCCCCCCC"), // 10 bytes
            Some(""),
            Some("cbcxx"), // 5 bytes
            None,
            Some("AAAAAAAA"),  // 8 bytes
            Some("BBBBBQBBB"), // 9 bytes
            Some("a"),
            Some("cbcxx"),
            Some("b"),
            Some("cbcxx"),
            Some(""),
            None,
            Some("BBBBBQBBB"),
            Some("BBBBBQBBB"),
            Some("AAAAAAAA"),
            Some("CXCCCCCCCC"),
        ]);

        let mut set = ArrowBytesSet::<O>::new(OutputType::Utf8);
        let array: ArrayRef = Arc::new(values);
        set.insert(&array);
        // values mut appear be in the order they were inserted
        assert_set(
            set,
            &[
                Some("a"),
                Some("b"),
                Some("CXCCCCCCCC"),
                Some(""),
                Some("cbcxx"),
                None,
                Some("AAAAAAAA"),
                Some("BBBBBQBBB"),
            ],
        );
    }

    #[test]
    fn string_set_non_utf8_32() {
        test_string_set_non_utf8::<i32>();
    }

    #[test]
    fn string_set_non_utf8_64() {
        test_string_set_non_utf8::<i64>();
    }

    fn test_string_set_non_utf8<O: OffsetSizeTrait>() {
        // basic test for mixed small and large string values
        let values = GenericStringArray::<O>::from(vec![
            Some("a"),
            Some("✨🔥"),
            Some("🔥"),
            Some("✨✨✨"),
            Some("foobarbaz"),
            Some("🔥"),
            Some("✨🔥"),
        ]);

        let mut set = ArrowBytesSet::<O>::new(OutputType::Utf8);
        let array: ArrayRef = Arc::new(values);
        set.insert(&array);
        // strings mut appear be in the order they were inserted
        assert_set(
            set,
            &[
                Some("a"),
                Some("✨🔥"),
                Some("🔥"),
                Some("✨✨✨"),
                Some("foobarbaz"),
            ],
        );
    }

    // asserts that the set contains the expected strings, in the same order
    fn assert_set<O: OffsetSizeTrait>(set: ArrowBytesSet<O>, expected: &[Option<&str>]) {
        let strings = set.into_state();
        let strings = strings.as_string::<O>();
        let state = strings.into_iter().collect::<Vec<_>>();
        assert_eq!(state, expected);
    }

    // Test use of binary output type
    #[test]
    fn test_binary_set() {
        let values: ArrayRef = Arc::new(BinaryArray::from_opt_vec(vec![
            Some(b"a"),
            Some(b"CXCCCCCCCC"),
            None,
            Some(b"CXCCCCCCCC"),
        ]));

        let expected: ArrayRef = Arc::new(BinaryArray::from_opt_vec(vec![
            Some(b"a"),
            Some(b"CXCCCCCCCC"),
            None,
        ]));

        let mut set = ArrowBytesSet::<i32>::new(OutputType::Binary);
        set.insert(&values);
        assert_eq!(&set.into_state(), &expected);
    }

    // Test use of binary output type
    #[test]
    fn test_large_binary_set() {
        let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![
            Some(b"a"),
            Some(b"CXCCCCCCCC"),
            None,
            Some(b"CXCCCCCCCC"),
        ]));

        let expected: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![
            Some(b"a"),
            Some(b"CXCCCCCCCC"),
            None,
        ]));

        let mut set = ArrowBytesSet::<i64>::new(OutputType::Binary);
        set.insert(&values);
        assert_eq!(&set.into_state(), &expected);
    }

    #[test]
    #[should_panic(
        expected = "matches!(values.data_type(), DataType::Utf8 | DataType::LargeUtf8)"
    )]
    fn test_mismatched_types() {
        // inserting binary into a set that expects strings should panic
        let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![Some(b"a")]));

        let mut set = ArrowBytesSet::<i64>::new(OutputType::Utf8);
        set.insert(&values);
    }

    #[test]
    #[should_panic]
    fn test_mismatched_sizes() {
        // inserting large strings into a set that expects small should panic
        let values: ArrayRef = Arc::new(LargeBinaryArray::from_opt_vec(vec![Some(b"a")]));

        let mut set = ArrowBytesSet::<i32>::new(OutputType::Binary);
        set.insert(&values);
    }

    // put more than 2GB in a string set and expect it to panic
    #[test]
    #[should_panic(
        expected = "Put 2147483648 bytes in buffer, more than can be represented by a i32"
    )]
    fn test_string_overflow() {
        let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
        for value in ["a", "b", "c"] {
            // 1GB strings, so 3rd is over 2GB and should panic
            let arr: ArrayRef =
                Arc::new(StringArray::from_iter_values([value.repeat(1 << 30)]));
            set.insert(&arr);
        }
    }

    // inserting strings into the set does not increase reported memory
    #[test]
    fn test_string_set_memory_usage() {
        let strings1 = GenericStringArray::<i32>::from(vec![
            Some("a"),
            Some("b"),
            Some("CXCCCCCCCC"), // 10 bytes
            Some("AAAAAAAA"),   // 8 bytes
            Some("BBBBBQBBB"),  // 9 bytes
        ]);
        let total_strings1_len = strings1
            .iter()
            .map(|s| s.map(|s| s.len()).unwrap_or(0))
            .sum::<usize>();
        let values1: ArrayRef = Arc::new(GenericStringArray::<i32>::from(strings1));

        // Much larger strings in strings2
        let strings2 = GenericStringArray::<i32>::from(vec![
            "FOO".repeat(1000),
            "BAR".repeat(2000),
            "BAZ".repeat(3000),
        ]);
        let total_strings2_len = strings2
            .iter()
            .map(|s| s.map(|s| s.len()).unwrap_or(0))
            .sum::<usize>();
        let values2: ArrayRef = Arc::new(GenericStringArray::<i32>::from(strings2));

        let mut set = ArrowBytesSet::<i32>::new(OutputType::Utf8);
        let size_empty = set.size();

        set.insert(&values1);
        let size_after_values1 = set.size();
        assert!(size_empty < size_after_values1);
        assert!(
            size_after_values1 > total_strings1_len,
            "expect {size_after_values1} to be more than {total_strings1_len}"
        );
        assert!(size_after_values1 < total_strings1_len + total_strings2_len);

        // inserting the same strings should not affect the size
        set.insert(&values1);
        assert_eq!(set.size(), size_after_values1);

        // inserting the large strings should increase the reported size
        set.insert(&values2);
        let size_after_values2 = set.size();
        assert!(size_after_values2 > size_after_values1);
        assert!(size_after_values2 > total_strings1_len + total_strings2_len);
    }

    #[test]
    fn test_map() {
        let input = vec![
            // Note mix of short/long strings
            Some("A"),
            Some("bcdefghijklmnop"),
            Some("X"),
            Some("Y"),
            None,
            Some("qrstuvqxyzhjwya"),
            Some("✨🔥"),
            Some("🔥"),
            Some("🔥🔥🔥🔥🔥🔥"),
        ];

        let mut test_map = TestMap::new();
        test_map.insert(&input);
        test_map.insert(&input); // put it in twice
        let expected_output: ArrayRef = Arc::new(StringArray::from(input));
        assert_eq!(&test_map.into_array(), &expected_output);
    }

    #[derive(Debug, PartialEq, Eq, Default, Clone, Copy)]
    struct TestPayload {
        // store the string value to check against input
        index: usize, // store the index of the string (each new string gets the next sequential input)
    }

    /// Wraps an [`ArrowBytesMap`], validating its invariants
    struct TestMap {
        map: ArrowBytesMap<i32, TestPayload>,
        // stores distinct strings seen, in order
        strings: Vec<Option<String>>,
        // map strings to index in strings
        indexes: HashMap<Option<String>, usize>,
    }

    impl Debug for TestMap {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            f.debug_struct("TestMap")
                .field("map", &"...")
                .field("strings", &self.strings)
                .field("indexes", &self.indexes)
                .finish()
        }
    }

    impl TestMap {
        /// creates a map with TestPayloads for the given strings and then
        /// validates the payloads
        fn new() -> Self {
            Self {
                map: ArrowBytesMap::new(OutputType::Utf8),
                strings: vec![],
                indexes: HashMap::new(),
            }
        }

        /// Inserts strings into the map
        fn insert(&mut self, strings: &[Option<&str>]) {
            let string_array = StringArray::from(strings.to_vec());
            let arr: ArrayRef = Arc::new(string_array);

            let mut next_index = self.indexes.len();
            let mut actual_new_strings = vec![];
            let mut actual_seen_indexes = vec![];
            // update self with new values, keeping track of newly added values
            for str in strings {
                let str = str.map(|s| s.to_string());
                let index = self.indexes.get(&str).cloned().unwrap_or_else(|| {
                    actual_new_strings.push(str.clone());
                    let index = self.strings.len();
                    self.strings.push(str.clone());
                    self.indexes.insert(str, index);
                    index
                });
                actual_seen_indexes.push(index);
            }

            // insert the values into the map, recording what we did
            let mut seen_new_strings = vec![];
            let mut seen_indexes = vec![];
            self.map.insert_if_new(
                &arr,
                |s| {
                    let value = s
                        .map(|s| String::from_utf8(s.to_vec()).expect("Non utf8 string"));
                    let index = next_index;
                    next_index += 1;
                    seen_new_strings.push(value);
                    TestPayload { index }
                },
                |payload| {
                    seen_indexes.push(payload.index);
                },
            );

            assert_eq!(actual_seen_indexes, seen_indexes);
            assert_eq!(actual_new_strings, seen_new_strings);
        }

        /// Call `self.map.into_array()` validating that the strings are in the same
        /// order as they were inserted
        fn into_array(self) -> ArrayRef {
            let Self {
                map,
                strings,
                indexes: _,
            } = self;

            let arr = map.into_state();
            let expected: ArrayRef = Arc::new(StringArray::from(strings));
            assert_eq!(&arr, &expected);
            arr
        }
    }
}