datafusion_physical_expr_common/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use arrow::array::{make_array, Array, ArrayRef, BooleanArray, MutableArrayData};
use arrow::compute::{and_kleene, is_not_null, SlicesIterator};

use datafusion_common::Result;
use datafusion_expr_common::sort_properties::ExprProperties;

use crate::physical_expr::PhysicalExpr;
use crate::sort_expr::{LexOrdering, LexOrderingRef, PhysicalSortExpr};
use crate::tree_node::ExprContext;

/// Represents a [`PhysicalExpr`] node with associated properties (order and
/// range) in a context where properties are tracked.
pub type ExprPropertiesNode = ExprContext<ExprProperties>;

impl ExprPropertiesNode {
    /// Constructs a new `ExprPropertiesNode` with unknown properties for a
    /// given physical expression. This node initializes with default properties
    /// and recursively applies this to all child expressions.
    pub fn new_unknown(expr: Arc<dyn PhysicalExpr>) -> Self {
        let children = expr
            .children()
            .into_iter()
            .cloned()
            .map(Self::new_unknown)
            .collect();
        Self {
            expr,
            data: ExprProperties::new_unknown(),
            children,
        }
    }
}

/// Scatter `truthy` array by boolean mask. When the mask evaluates `true`, next values of `truthy`
/// are taken, when the mask evaluates `false` values null values are filled.
///
/// # Arguments
/// * `mask` - Boolean values used to determine where to put the `truthy` values
/// * `truthy` - All values of this array are to scatter according to `mask` into final result.
pub fn scatter(mask: &BooleanArray, truthy: &dyn Array) -> Result<ArrayRef> {
    let truthy = truthy.to_data();

    // update the mask so that any null values become false
    // (SlicesIterator doesn't respect nulls)
    let mask = and_kleene(mask, &is_not_null(mask)?)?;

    let mut mutable = MutableArrayData::new(vec![&truthy], true, mask.len());

    // the SlicesIterator slices only the true values. So the gaps left by this iterator we need to
    // fill with falsy values

    // keep track of how much is filled
    let mut filled = 0;
    // keep track of current position we have in truthy array
    let mut true_pos = 0;

    SlicesIterator::new(&mask).for_each(|(start, end)| {
        // the gap needs to be filled with nulls
        if start > filled {
            mutable.extend_nulls(start - filled);
        }
        // fill with truthy values
        let len = end - start;
        mutable.extend(0, true_pos, true_pos + len);
        true_pos += len;
        filled = end;
    });
    // the remaining part is falsy
    if filled < mask.len() {
        mutable.extend_nulls(mask.len() - filled);
    }

    let data = mutable.freeze();
    Ok(make_array(data))
}

/// Reverses the ORDER BY expression, which is useful during equivalent window
/// expression construction. For instance, 'ORDER BY a ASC, NULLS LAST' turns into
/// 'ORDER BY a DESC, NULLS FIRST'.
pub fn reverse_order_bys(order_bys: LexOrderingRef) -> LexOrdering {
    order_bys
        .iter()
        .map(|e| PhysicalSortExpr::new(e.expr.clone(), !e.options))
        .collect()
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use arrow::array::Int32Array;

    use datafusion_common::cast::{as_boolean_array, as_int32_array};

    use super::*;

    #[test]
    fn scatter_int() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected =
            Int32Array::from_iter(vec![Some(1), Some(10), None, None, Some(11)]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_int_end_with_false() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, false, true, false, false, false]);

        // output should be same length as mask
        let expected =
            Int32Array::from_iter(vec![Some(1), None, Some(10), None, None, None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_with_null_mask() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11]));
        let mask: BooleanArray = vec![Some(false), None, Some(true), Some(true), None]
            .into_iter()
            .collect();

        // output should treat nulls as though they are false
        let expected = Int32Array::from_iter(vec![None, None, Some(1), Some(10), None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_boolean() -> Result<()> {
        let truthy = Arc::new(BooleanArray::from(vec![false, false, false, true]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected = BooleanArray::from_iter(vec![
            Some(false),
            Some(false),
            None,
            None,
            Some(false),
        ]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_boolean_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }
}