1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use crate::PhysicalExpr;
use arrow::array::BooleanArray;
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::ScalarValue;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::ColumnarValue;
#[derive(Debug)]
pub struct NotExpr {
arg: Arc<dyn PhysicalExpr>,
}
impl NotExpr {
pub fn new(arg: Arc<dyn PhysicalExpr>) -> Self {
Self { arg }
}
pub fn arg(&self) -> &Arc<dyn PhysicalExpr> {
&self.arg
}
}
impl fmt::Display for NotExpr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "NOT {}", self.arg)
}
}
impl PhysicalExpr for NotExpr {
fn as_any(&self) -> &dyn Any {
self
}
fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(DataType::Boolean)
}
fn nullable(&self, input_schema: &Schema) -> Result<bool> {
self.arg.nullable(input_schema)
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
let evaluate_arg = self.arg.evaluate(batch)?;
match evaluate_arg {
ColumnarValue::Array(array) => {
let array =
array
.as_any()
.downcast_ref::<BooleanArray>()
.ok_or_else(|| {
DataFusionError::Internal(
"boolean_op failed to downcast array".to_owned(),
)
})?;
Ok(ColumnarValue::Array(Arc::new(
arrow::compute::kernels::boolean::not(array)?,
)))
}
ColumnarValue::Scalar(scalar) => {
if scalar.is_null() {
return Ok(ColumnarValue::Scalar(ScalarValue::Boolean(None)));
}
let value_type = scalar.get_datatype();
if value_type != DataType::Boolean {
return Err(DataFusionError::Internal(format!(
"NOT '{:?}' can't be evaluated because the expression's type is {:?}, not boolean or NULL",
self.arg, value_type,
)));
}
let bool_value: bool = scalar.try_into()?;
Ok(ColumnarValue::Scalar(ScalarValue::Boolean(Some(
!bool_value,
))))
}
}
}
}
pub fn not(arg: Arc<dyn PhysicalExpr>) -> Result<Arc<dyn PhysicalExpr>> {
Ok(Arc::new(NotExpr::new(arg)))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use arrow::datatypes::*;
use datafusion_common::Result;
#[test]
fn neg_op() -> Result<()> {
let schema = Schema::new(vec![Field::new("a", DataType::Boolean, true)]);
let expr = not(col("a", &schema)?)?;
assert_eq!(expr.data_type(&schema)?, DataType::Boolean);
assert!(expr.nullable(&schema)?);
let input = BooleanArray::from(vec![Some(true), None, Some(false)]);
let expected = &BooleanArray::from(vec![Some(false), None, Some(true)]);
let batch =
RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(input)])?;
let result = expr.evaluate(&batch)?.into_array(batch.num_rows());
let result = result
.as_any()
.downcast_ref::<BooleanArray>()
.expect("failed to downcast to BooleanArray");
assert_eq!(result, expected);
Ok(())
}
}