1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use crate::window::partition_evaluator::PartitionEvaluator;
use crate::window::BuiltInWindowFunctionExpr;
use crate::PhysicalExpr;
use arrow::array::ArrayRef;
use arrow::array::Float64Array;
use arrow::datatypes::{DataType, Field};
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use std::any::Any;
use std::iter;
use std::ops::Range;
use std::sync::Arc;
#[derive(Debug)]
pub struct CumeDist {
name: String,
}
pub fn cume_dist(name: String) -> CumeDist {
CumeDist { name }
}
impl BuiltInWindowFunctionExpr for CumeDist {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
let nullable = false;
let data_type = DataType::Float64;
Ok(Field::new(self.name(), data_type, nullable))
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![]
}
fn name(&self) -> &str {
&self.name
}
fn create_evaluator(
&self,
_batch: &RecordBatch,
) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(CumeDistEvaluator {}))
}
}
pub(crate) struct CumeDistEvaluator;
impl PartitionEvaluator for CumeDistEvaluator {
fn include_rank(&self) -> bool {
true
}
fn evaluate_partition(&self, _partition: Range<usize>) -> Result<ArrayRef> {
unreachable!(
"cume_dist evaluation must be called with evaluate_partition_with_rank"
)
}
fn evaluate_partition_with_rank(
&self,
partition: Range<usize>,
ranks_in_partition: &[Range<usize>],
) -> Result<ArrayRef> {
let scaler = (partition.end - partition.start) as f64;
let result = Float64Array::from_iter_values(
ranks_in_partition
.iter()
.scan(0_u64, |acc, range| {
let len = range.end - range.start;
*acc += len as u64;
let value: f64 = (*acc as f64) / scaler;
let result = iter::repeat(value).take(len);
Some(result)
})
.flatten(),
);
Ok(Arc::new(result))
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::{array::*, datatypes::*};
fn test_i32_result(
expr: &CumeDist,
data: Vec<i32>,
partition: Range<usize>,
ranks: Vec<Range<usize>>,
expected: Vec<f64>,
) -> Result<()> {
let arr: ArrayRef = Arc::new(Int32Array::from(data));
let values = vec![arr];
let schema = Schema::new(vec![Field::new("arr", DataType::Int32, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), values.clone())?;
let result = expr
.create_evaluator(&batch)?
.evaluate_with_rank(vec![partition], ranks)?;
assert_eq!(1, result.len());
let result = result[0].as_any().downcast_ref::<Float64Array>().unwrap();
let result = result.values();
assert_eq!(expected, result);
Ok(())
}
#[test]
fn test_cume_dist() -> Result<()> {
let r = cume_dist("arr".into());
let expected = vec![0.0; 0];
test_i32_result(&r, vec![], 0..0, vec![], expected)?;
let expected = vec![1.0; 1];
test_i32_result(&r, vec![20; 1], 0..1, vec![0..1], expected)?;
let expected = vec![1.0; 2];
test_i32_result(&r, vec![20; 2], 0..2, vec![0..2], expected)?;
let expected = vec![0.5, 0.5, 1.0, 1.0];
test_i32_result(&r, vec![1, 1, 2, 2], 0..4, vec![0..2, 2..4], expected)?;
let expected = vec![0.25, 0.5, 0.75, 1.0];
test_i32_result(
&r,
vec![1, 2, 4, 5],
0..4,
vec![0..1, 1..2, 2..3, 3..4],
expected,
)?;
Ok(())
}
}