1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::datatypes::{DataType, Schema};

use arrow::record_batch::RecordBatch;

use datafusion_common::{ColumnStatistics, DataFusionError, Result, ScalarValue};
use datafusion_expr::ColumnarValue;

use arrow::array::{make_array, Array, ArrayRef, BooleanArray, MutableArrayData};
use arrow::compute::{and_kleene, filter_record_batch, is_not_null, SlicesIterator};

use std::any::Any;
use std::fmt::{Debug, Display};
use std::sync::Arc;

/// Expression that can be evaluated against a RecordBatch
/// A Physical expression knows its type, nullability and how to evaluate itself.
pub trait PhysicalExpr: Send + Sync + Display + Debug + PartialEq<dyn Any> {
    /// Returns the physical expression as [`Any`](std::any::Any) so that it can be
    /// downcast to a specific implementation.
    fn as_any(&self) -> &dyn Any;
    /// Get the data type of this expression, given the schema of the input
    fn data_type(&self, input_schema: &Schema) -> Result<DataType>;
    /// Determine whether this expression is nullable, given the schema of the input
    fn nullable(&self, input_schema: &Schema) -> Result<bool>;
    /// Evaluate an expression against a RecordBatch
    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue>;
    /// Evaluate an expression against a RecordBatch after first applying a
    /// validity array
    fn evaluate_selection(
        &self,
        batch: &RecordBatch,
        selection: &BooleanArray,
    ) -> Result<ColumnarValue> {
        let tmp_batch = filter_record_batch(batch, selection)?;

        let tmp_result = self.evaluate(&tmp_batch)?;
        // All values from the `selection` filter are true.
        if batch.num_rows() == tmp_batch.num_rows() {
            return Ok(tmp_result);
        }
        if let ColumnarValue::Array(a) = tmp_result {
            let result = scatter(selection, a.as_ref())?;
            Ok(ColumnarValue::Array(result))
        } else {
            Ok(tmp_result)
        }
    }
    /// Return the expression statistics for this expression. This API is currently experimental.
    fn expr_stats(&self) -> Arc<dyn PhysicalExprStats> {
        Arc::new(BasicExpressionStats {})
    }
    /// Get a list of child PhysicalExpr that provide the input for this expr.
    fn children(&self) -> Vec<Arc<dyn PhysicalExpr>>;

    /// Returns a new PhysicalExpr where all children were replaced by new exprs.
    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>>;
}

/// Statistics about the result of a single expression.
#[derive(Clone, Debug, PartialEq)]
pub struct ExprBoundaries {
    /// Maximum value this expression's result can have.
    pub max_value: ScalarValue,
    /// Minimum value this expression's result can have.
    pub min_value: ScalarValue,
    /// Maximum number of distinct values this expression can produce, if known.
    pub distinct_count: Option<usize>,
    /// Selectivity of this expression if it were used as a predicate, as a
    /// value between 0 and 1.
    pub selectivity: Option<f64>,
}

impl ExprBoundaries {
    /// Create a new `ExprBoundaries`.
    pub fn new(
        max_value: ScalarValue,
        min_value: ScalarValue,
        distinct_count: Option<usize>,
    ) -> Self {
        Self {
            max_value,
            min_value,
            distinct_count,
            selectivity: None,
        }
    }

    /// Try to reduce the expression boundaries to a single value if possible.
    pub fn reduce(&self) -> Option<ScalarValue> {
        if self.min_value == self.max_value {
            Some(self.min_value.clone())
        } else {
            None
        }
    }
}

/// A toolkit to work with physical expressions statistics. This API is currently experimental
/// and might be subject to change.
pub trait PhysicalExprStats: Send + Sync {
    /// Return an estimate about the boundaries of this expression's result would have (in
    /// terms of minimum and maximum values it can take as well the number of unique values
    /// it can produce). The inputs are the column-level statistics from the current physical
    /// plan.
    fn boundaries(&self, columns: &[ColumnStatistics]) -> Option<ExprBoundaries>;
}

#[derive(Debug, Clone)]
pub struct BasicExpressionStats {}

/// A dummy implementation of [`ExpressionStats`] that does not provide any statistics.
impl PhysicalExprStats for BasicExpressionStats {
    #[allow(unused_variables)]
    fn boundaries(&self, columns: &[ColumnStatistics]) -> Option<ExprBoundaries> {
        None
    }
}

/// Returns a copy of this expr if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `PhysicalExpr::children()`.
/// Allow the vtable address comparisons for PhysicalExpr Trait Objects,it is harmless even
/// in the case of 'false-native'.
#[allow(clippy::vtable_address_comparisons)]
pub fn with_new_children_if_necessary(
    expr: Arc<dyn PhysicalExpr>,
    children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
    if children.len() != expr.children().len() {
        Err(DataFusionError::Internal(
            "PhysicalExpr: Wrong number of children".to_string(),
        ))
    } else if children.is_empty()
        || children
            .iter()
            .zip(expr.children().iter())
            .any(|(c1, c2)| !Arc::ptr_eq(c1, c2))
    {
        expr.with_new_children(children)
    } else {
        Ok(expr)
    }
}

pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
    if any.is::<Arc<dyn PhysicalExpr>>() {
        any.downcast_ref::<Arc<dyn PhysicalExpr>>()
            .unwrap()
            .as_any()
    } else if any.is::<Box<dyn PhysicalExpr>>() {
        any.downcast_ref::<Box<dyn PhysicalExpr>>()
            .unwrap()
            .as_any()
    } else {
        any
    }
}

/// Scatter `truthy` array by boolean mask. When the mask evaluates `true`, next values of `truthy`
/// are taken, when the mask evaluates `false` values null values are filled.
///
/// # Arguments
/// * `mask` - Boolean values used to determine where to put the `truthy` values
/// * `truthy` - All values of this array are to scatter according to `mask` into final result.
fn scatter(mask: &BooleanArray, truthy: &dyn Array) -> Result<ArrayRef> {
    let truthy = truthy.data();

    // update the mask so that any null values become false
    // (SlicesIterator doesn't respect nulls)
    let mask = and_kleene(mask, &is_not_null(mask)?)?;

    let mut mutable = MutableArrayData::new(vec![truthy], true, mask.len());

    // the SlicesIterator slices only the true values. So the gaps left by this iterator we need to
    // fill with falsy values

    // keep track of how much is filled
    let mut filled = 0;
    // keep track of current position we have in truthy array
    let mut true_pos = 0;

    SlicesIterator::new(&mask).for_each(|(start, end)| {
        // the gap needs to be filled with nulls
        if start > filled {
            mutable.extend_nulls(start - filled);
        }
        // fill with truthy values
        let len = end - start;
        mutable.extend(0, true_pos, true_pos + len);
        true_pos += len;
        filled = end;
    });
    // the remaining part is falsy
    if filled < mask.len() {
        mutable.extend_nulls(mask.len() - filled);
    }

    let data = mutable.freeze();
    Ok(make_array(data))
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use super::*;
    use arrow::array::Int32Array;
    use datafusion_common::Result;

    #[test]
    fn scatter_int() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected =
            Int32Array::from_iter(vec![Some(1), Some(10), None, None, Some(11)]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = result.as_any().downcast_ref::<Int32Array>().unwrap();

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_int_end_with_false() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, false, true, false, false, false]);

        // output should be same length as mask
        let expected =
            Int32Array::from_iter(vec![Some(1), None, Some(10), None, None, None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = result.as_any().downcast_ref::<Int32Array>().unwrap();

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_with_null_mask() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11]));
        let mask: BooleanArray = vec![Some(false), None, Some(true), Some(true), None]
            .into_iter()
            .collect();

        // output should treat nulls as though they are false
        let expected = Int32Array::from_iter(vec![None, None, Some(1), Some(10), None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = result.as_any().downcast_ref::<Int32Array>().unwrap();

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_boolean() -> Result<()> {
        let truthy = Arc::new(BooleanArray::from(vec![false, false, false, true]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected = BooleanArray::from_iter(vec![
            Some(false),
            Some(false),
            None,
            None,
            Some(false),
        ]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = result.as_any().downcast_ref::<BooleanArray>().unwrap();

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn reduce_boundaries() -> Result<()> {
        let different_boundaries = ExprBoundaries::new(
            ScalarValue::Int32(Some(1)),
            ScalarValue::Int32(Some(10)),
            None,
        );
        assert_eq!(different_boundaries.reduce(), None);

        let scalar_boundaries = ExprBoundaries::new(
            ScalarValue::Int32(Some(1)),
            ScalarValue::Int32(Some(1)),
            None,
        );
        assert_eq!(
            scalar_boundaries.reduce(),
            Some(ScalarValue::Int32(Some(1)))
        );

        // Can still reduce.
        let no_boundaries =
            ExprBoundaries::new(ScalarValue::Int32(None), ScalarValue::Int32(None), None);
        assert_eq!(no_boundaries.reduce(), Some(ScalarValue::Int32(None)));

        Ok(())
    }
}