1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use super::window_frame_state::WindowFrameContext;
use super::BuiltInWindowFunctionExpr;
use super::WindowExpr;
use crate::{expressions::PhysicalSortExpr, PhysicalExpr};
use arrow::compute::{concat, SortOptions};
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};
use datafusion_common::DataFusionError;
use datafusion_common::Result;
use datafusion_expr::WindowFrame;
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
#[derive(Debug)]
pub struct BuiltInWindowExpr {
expr: Arc<dyn BuiltInWindowFunctionExpr>,
partition_by: Vec<Arc<dyn PhysicalExpr>>,
order_by: Vec<PhysicalSortExpr>,
window_frame: Option<Arc<WindowFrame>>,
}
impl BuiltInWindowExpr {
pub fn new(
expr: Arc<dyn BuiltInWindowFunctionExpr>,
partition_by: &[Arc<dyn PhysicalExpr>],
order_by: &[PhysicalSortExpr],
window_frame: Option<Arc<WindowFrame>>,
) -> Self {
Self {
expr,
partition_by: partition_by.to_vec(),
order_by: order_by.to_vec(),
window_frame,
}
}
}
impl WindowExpr for BuiltInWindowExpr {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
self.expr.name()
}
fn field(&self) -> Result<Field> {
self.expr.field()
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.expr.expressions()
}
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
&self.partition_by
}
fn order_by(&self) -> &[PhysicalSortExpr] {
&self.order_by
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
let evaluator = self.expr.create_evaluator()?;
let num_rows = batch.num_rows();
let partition_columns = self.partition_columns(batch)?;
let partition_points =
self.evaluate_partition_points(num_rows, &partition_columns)?;
let results = if evaluator.uses_window_frame() {
let sort_options: Vec<SortOptions> =
self.order_by.iter().map(|o| o.options).collect();
let (_, order_bys) = self.get_values_orderbys(batch)?;
let window_frame = if !order_bys.is_empty() && self.window_frame.is_none() {
Some(Arc::new(WindowFrame::default()))
} else {
self.window_frame.clone()
};
let mut row_wise_results = vec![];
for partition_range in &partition_points {
let length = partition_range.end - partition_range.start;
let (values, order_bys) = self
.get_values_orderbys(&batch.slice(partition_range.start, length))?;
let mut window_frame_ctx = WindowFrameContext::new(&window_frame);
for idx in 0..length {
let range = window_frame_ctx.calculate_range(
&order_bys,
&sort_options,
num_rows,
idx,
)?;
let range = Range {
start: range.0,
end: range.1,
};
let value = evaluator.evaluate_inside_range(&values, range)?;
row_wise_results.push(value.to_array());
}
}
row_wise_results
} else if evaluator.include_rank() {
let columns = self.sort_columns(batch)?;
let sort_partition_points =
self.evaluate_partition_points(num_rows, &columns)?;
evaluator.evaluate_with_rank(partition_points, sort_partition_points)?
} else {
let (values, _) = self.get_values_orderbys(batch)?;
evaluator.evaluate(&values, partition_points)?
};
let results = results.iter().map(|i| i.as_ref()).collect::<Vec<_>>();
concat(&results).map_err(DataFusionError::ArrowError)
}
}