1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use std::any::Any;
use std::sync::Arc;
use arrow::array::ArrayRef;
use arrow::compute::kernels::arithmetic::negate;
use arrow::{
array::{Float32Array, Float64Array, Int16Array, Int32Array, Int64Array, Int8Array},
datatypes::{DataType, Schema},
record_batch::RecordBatch,
};
use crate::physical_expr::down_cast_any_ref;
use crate::PhysicalExpr;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::{
type_coercion::{is_null, is_signed_numeric},
ColumnarValue,
};
macro_rules! compute_op {
($OPERAND:expr, $OP:ident, $DT:ident) => {{
let operand = $OPERAND
.as_any()
.downcast_ref::<$DT>()
.expect("compute_op failed to downcast array");
Ok(Arc::new($OP(&operand)?))
}};
}
#[derive(Debug)]
pub struct NegativeExpr {
arg: Arc<dyn PhysicalExpr>,
}
impl NegativeExpr {
pub fn new(arg: Arc<dyn PhysicalExpr>) -> Self {
Self { arg }
}
pub fn arg(&self) -> &Arc<dyn PhysicalExpr> {
&self.arg
}
}
impl std::fmt::Display for NegativeExpr {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "(- {})", self.arg)
}
}
impl PhysicalExpr for NegativeExpr {
fn as_any(&self) -> &dyn Any {
self
}
fn data_type(&self, input_schema: &Schema) -> Result<DataType> {
self.arg.data_type(input_schema)
}
fn nullable(&self, input_schema: &Schema) -> Result<bool> {
self.arg.nullable(input_schema)
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
let arg = self.arg.evaluate(batch)?;
match arg {
ColumnarValue::Array(array) => {
let result: Result<ArrayRef> = match array.data_type() {
DataType::Int8 => compute_op!(array, negate, Int8Array),
DataType::Int16 => compute_op!(array, negate, Int16Array),
DataType::Int32 => compute_op!(array, negate, Int32Array),
DataType::Int64 => compute_op!(array, negate, Int64Array),
DataType::Float32 => compute_op!(array, negate, Float32Array),
DataType::Float64 => compute_op!(array, negate, Float64Array),
_ => Err(DataFusionError::Internal(format!(
"(- '{:?}') can't be evaluated because the expression's type is {:?}, not signed numeric",
self,
array.data_type(),
))),
};
result.map(|a| ColumnarValue::Array(a))
}
ColumnarValue::Scalar(scalar) => {
Ok(ColumnarValue::Scalar((scalar.arithmetic_negate())?))
}
}
}
fn children(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.arg.clone()]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
Ok(Arc::new(NegativeExpr::new(children[0].clone())))
}
}
impl PartialEq<dyn Any> for NegativeExpr {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| self.arg.eq(&x.arg))
.unwrap_or(false)
}
}
pub fn negative(
arg: Arc<dyn PhysicalExpr>,
input_schema: &Schema,
) -> Result<Arc<dyn PhysicalExpr>> {
let data_type = arg.data_type(input_schema)?;
if is_null(&data_type) {
Ok(arg)
} else if !is_signed_numeric(&data_type) {
Err(DataFusionError::Internal(
format!("Can't create negative physical expr for (- '{arg:?}'), the type of child expr is {data_type}, not signed numeric"),
))
} else {
Ok(Arc::new(NegativeExpr::new(arg)))
}
}