1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use crate::window::partition_evaluator::PartitionEvaluator;
use crate::{PhysicalExpr, PhysicalSortExpr};
use arrow::compute::kernels::partition::lexicographical_partition_ranges;
use arrow::compute::kernels::sort::SortColumn;
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};
use arrow_schema::DataType;
use datafusion_common::{reverse_sort_options, DataFusionError, Result, ScalarValue};
use datafusion_expr::{Accumulator, WindowFrame};
use indexmap::IndexMap;
use std::any::Any;
use std::fmt::Debug;
use std::ops::Range;
use std::sync::Arc;
pub trait WindowExpr: Send + Sync + Debug {
fn as_any(&self) -> &dyn Any;
fn field(&self) -> Result<Field>;
fn name(&self) -> &str {
"WindowExpr: default name"
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;
fn evaluate_args(&self, batch: &RecordBatch) -> Result<Vec<ArrayRef>> {
self.expressions()
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect()
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>;
fn evaluate_stateful(
&self,
_partition_batches: &PartitionBatches,
_window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
Err(DataFusionError::Internal(format!(
"evaluate_stateful is not implemented for {}",
self.name()
)))
}
fn evaluate_partition_points(
&self,
num_rows: usize,
partition_columns: &[SortColumn],
) -> Result<Vec<Range<usize>>> {
if partition_columns.is_empty() {
Ok(vec![Range {
start: 0,
end: num_rows,
}])
} else {
Ok(lexicographical_partition_ranges(partition_columns)
.map_err(DataFusionError::ArrowError)?
.collect::<Vec<_>>())
}
}
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>];
fn order_by(&self) -> &[PhysicalSortExpr];
fn order_by_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
self.order_by()
.iter()
.map(|e| e.evaluate_to_sort_column(batch))
.collect::<Result<Vec<SortColumn>>>()
}
fn sort_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
let order_by_columns = self.order_by_columns(batch)?;
Ok(order_by_columns)
}
fn get_values_orderbys(
&self,
record_batch: &RecordBatch,
) -> Result<(Vec<ArrayRef>, Vec<ArrayRef>)> {
let values = self.evaluate_args(record_batch)?;
let order_by_columns = self.order_by_columns(record_batch)?;
let order_bys: Vec<ArrayRef> =
order_by_columns.iter().map(|s| s.values.clone()).collect();
Ok((values, order_bys))
}
fn get_window_frame(&self) -> &Arc<WindowFrame>;
fn uses_bounded_memory(&self) -> bool;
fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>>;
}
pub fn reverse_order_bys(order_bys: &[PhysicalSortExpr]) -> Vec<PhysicalSortExpr> {
order_bys
.iter()
.map(|e| PhysicalSortExpr {
expr: e.expr.clone(),
options: reverse_sort_options(e.options),
})
.collect()
}
#[derive(Debug)]
pub enum WindowFn {
Builtin(Box<dyn PartitionEvaluator>),
Aggregate(Box<dyn Accumulator>),
}
#[derive(Debug, Clone, Default)]
pub struct RankState {
pub last_rank_data: Vec<ScalarValue>,
pub last_rank_boundary: usize,
pub n_rank: usize,
}
#[derive(Debug, Clone, Default)]
pub struct NumRowsState {
pub n_rows: usize,
}
#[derive(Debug, Clone, Default)]
pub struct NthValueState {
pub range: Range<usize>,
}
#[derive(Debug, Clone, Default)]
pub struct LeadLagState {
pub idx: usize,
}
#[derive(Debug, Clone, Default)]
pub enum BuiltinWindowState {
Rank(RankState),
NumRows(NumRowsState),
NthValue(NthValueState),
LeadLag(LeadLagState),
#[default]
Default,
}
#[derive(Debug)]
pub enum WindowFunctionState {
AggregateState(Vec<ScalarValue>),
BuiltinWindowState(BuiltinWindowState),
}
#[derive(Debug)]
pub struct WindowAggState {
pub window_frame_range: Range<usize>,
pub last_calculated_index: usize,
pub offset_pruned_rows: usize,
pub window_function_state: WindowFunctionState,
pub out_col: ArrayRef,
pub n_row_result_missing: usize,
pub is_end: bool,
}
#[derive(Debug)]
pub struct PartitionBatchState {
pub record_batch: RecordBatch,
pub is_end: bool,
}
pub type PartitionKey = Vec<ScalarValue>;
#[derive(Debug)]
pub struct WindowState {
pub state: WindowAggState,
pub window_fn: WindowFn,
}
pub type PartitionWindowAggStates = IndexMap<PartitionKey, WindowState>;
pub type PartitionBatches = IndexMap<PartitionKey, PartitionBatchState>;
impl WindowAggState {
pub fn new(
out_type: &DataType,
window_function_state: WindowFunctionState,
) -> Result<Self> {
let empty_out_col = ScalarValue::try_from(out_type)?.to_array_of_size(0);
Ok(Self {
window_frame_range: Range { start: 0, end: 0 },
last_calculated_index: 0,
offset_pruned_rows: 0,
window_function_state,
out_col: empty_out_col,
n_row_result_missing: 0,
is_end: false,
})
}
}