1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
use arrow::array::{Array, ArrayRef};
use arrow::datatypes::Field;
use arrow::record_batch::RecordBatch;
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::{Accumulator, WindowFrame, WindowFrameUnits};
use crate::window::window_expr::{reverse_order_bys, AggregateWindowExpr};
use crate::window::{
PartitionBatches, PartitionWindowAggStates, PlainAggregateWindowExpr, WindowExpr,
};
use crate::{expressions::PhysicalSortExpr, AggregateExpr, PhysicalExpr};
#[derive(Debug)]
pub struct SlidingAggregateWindowExpr {
aggregate: Arc<dyn AggregateExpr>,
partition_by: Vec<Arc<dyn PhysicalExpr>>,
order_by: Vec<PhysicalSortExpr>,
window_frame: Arc<WindowFrame>,
}
impl SlidingAggregateWindowExpr {
pub fn new(
aggregate: Arc<dyn AggregateExpr>,
partition_by: &[Arc<dyn PhysicalExpr>],
order_by: &[PhysicalSortExpr],
window_frame: Arc<WindowFrame>,
) -> Self {
Self {
aggregate,
partition_by: partition_by.to_vec(),
order_by: order_by.to_vec(),
window_frame,
}
}
pub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr> {
&self.aggregate
}
}
impl WindowExpr for SlidingAggregateWindowExpr {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
self.aggregate.field()
}
fn name(&self) -> &str {
self.aggregate.name()
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.aggregate.expressions()
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
self.aggregate_evaluate(batch)
}
fn evaluate_stateful(
&self,
partition_batches: &PartitionBatches,
window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
self.aggregate_evaluate_stateful(partition_batches, window_agg_state)
}
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
&self.partition_by
}
fn order_by(&self) -> &[PhysicalSortExpr] {
&self.order_by
}
fn get_window_frame(&self) -> &Arc<WindowFrame> {
&self.window_frame
}
fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>> {
self.aggregate.reverse_expr().map(|reverse_expr| {
let reverse_window_frame = self.window_frame.reverse();
if reverse_window_frame.start_bound.is_unbounded() {
Arc::new(PlainAggregateWindowExpr::new(
reverse_expr,
&self.partition_by.clone(),
&reverse_order_bys(&self.order_by),
Arc::new(self.window_frame.reverse()),
)) as _
} else {
Arc::new(SlidingAggregateWindowExpr::new(
reverse_expr,
&self.partition_by.clone(),
&reverse_order_bys(&self.order_by),
Arc::new(self.window_frame.reverse()),
)) as _
}
})
}
fn uses_bounded_memory(&self) -> bool {
self.aggregate.supports_bounded_execution()
&& !self.window_frame.end_bound.is_unbounded()
&& !matches!(self.window_frame.units, WindowFrameUnits::Groups)
}
}
impl AggregateWindowExpr for SlidingAggregateWindowExpr {
fn get_accumulator(&self) -> Result<Box<dyn Accumulator>> {
self.aggregate.create_sliding_accumulator()
}
fn get_aggregate_result_inside_range(
&self,
last_range: &Range<usize>,
cur_range: &Range<usize>,
value_slice: &[ArrayRef],
accumulator: &mut Box<dyn Accumulator>,
) -> Result<ScalarValue> {
if cur_range.start == cur_range.end {
ScalarValue::try_from(self.aggregate.field()?.data_type())
} else {
let update_bound = cur_range.end - last_range.end;
if update_bound > 0 {
let update: Vec<ArrayRef> = value_slice
.iter()
.map(|v| v.slice(last_range.end, update_bound))
.collect();
accumulator.update_batch(&update)?
}
let retract_bound = cur_range.start - last_range.start;
if retract_bound > 0 {
let retract: Vec<ArrayRef> = value_slice
.iter()
.map(|v| v.slice(last_range.start, retract_bound))
.collect();
accumulator.retract_batch(&retract)?
}
accumulator.evaluate()
}
}
}