1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#[macro_use]
mod binary;
mod case;
mod cast;
mod column;
mod datetime;
mod get_indexed_field;
mod in_list;
mod is_not_null;
mod is_null;
mod like;
mod literal;
mod negative;
mod no_op;
mod not;
mod nullif;
mod try_cast;
pub mod helpers {
pub use crate::aggregate::min_max::{max, min};
}
pub use crate::aggregate::approx_distinct::ApproxDistinct;
pub use crate::aggregate::approx_median::ApproxMedian;
pub use crate::aggregate::approx_percentile_cont::ApproxPercentileCont;
pub use crate::aggregate::approx_percentile_cont_with_weight::ApproxPercentileContWithWeight;
pub use crate::aggregate::array_agg::ArrayAgg;
pub use crate::aggregate::array_agg_distinct::DistinctArrayAgg;
pub use crate::aggregate::average::{Avg, AvgAccumulator};
pub use crate::aggregate::build_in::create_aggregate_expr;
pub use crate::aggregate::correlation::Correlation;
pub use crate::aggregate::count::Count;
pub use crate::aggregate::count_distinct::DistinctCount;
pub use crate::aggregate::covariance::{Covariance, CovariancePop};
pub use crate::aggregate::grouping::Grouping;
pub use crate::aggregate::median::Median;
pub use crate::aggregate::min_max::{Max, Min};
pub use crate::aggregate::min_max::{MaxAccumulator, MinAccumulator};
pub use crate::aggregate::stats::StatsType;
pub use crate::aggregate::stddev::{Stddev, StddevPop};
pub use crate::aggregate::sum::Sum;
pub use crate::aggregate::sum_distinct::DistinctSum;
pub use crate::aggregate::variance::{Variance, VariancePop};
pub use crate::window::cume_dist::cume_dist;
pub use crate::window::cume_dist::CumeDist;
pub use crate::window::lead_lag::WindowShift;
pub use crate::window::lead_lag::{lag, lead};
pub use crate::window::nth_value::NthValue;
pub use crate::window::ntile::Ntile;
pub use crate::window::rank::{dense_rank, percent_rank, rank};
pub use crate::window::rank::{Rank, RankType};
pub use crate::window::row_number::RowNumber;
pub use binary::{binary, BinaryExpr};
pub use case::{case, CaseExpr};
pub use cast::{
cast, cast_column, cast_with_options, CastExpr, DEFAULT_DATAFUSION_CAST_OPTIONS,
};
pub use column::{col, Column, UnKnownColumn};
pub use datetime::DateTimeIntervalExpr;
pub use get_indexed_field::GetIndexedFieldExpr;
pub use in_list::{in_list, InListExpr};
pub use is_not_null::{is_not_null, IsNotNullExpr};
pub use is_null::{is_null, IsNullExpr};
pub use like::{like, LikeExpr};
pub use literal::{lit, Literal};
pub use negative::{negative, NegativeExpr};
pub use no_op::NoOp;
pub use not::{not, NotExpr};
pub use nullif::nullif_func;
pub use try_cast::{try_cast, TryCastExpr};
pub fn format_state_name(name: &str, state_name: &str) -> String {
format!("{name}[{state_name}]")
}
pub use crate::PhysicalSortExpr;
#[cfg(test)]
pub(crate) mod tests {
use crate::AggregateExpr;
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use std::sync::Arc;
#[macro_export]
macro_rules! generic_test_op {
($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr) => {
generic_test_op!($ARRAY, $DATATYPE, $OP, $EXPECTED, $EXPECTED.get_datatype())
};
($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{
let schema = Schema::new(vec![Field::new("a", $DATATYPE, true)]);
let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY])?;
let agg = Arc::new(<$OP>::new(
col("a", &schema)?,
"bla".to_string(),
$EXPECTED_DATATYPE,
));
let actual = aggregate(&batch, agg)?;
let expected = ScalarValue::from($EXPECTED);
assert_eq!(expected, actual);
Ok(())
}};
}
#[macro_export]
macro_rules! generic_test_op2 {
($ARRAY1:expr, $ARRAY2:expr, $DATATYPE1:expr, $DATATYPE2:expr, $OP:ident, $EXPECTED:expr) => {
generic_test_op2!(
$ARRAY1,
$ARRAY2,
$DATATYPE1,
$DATATYPE2,
$OP,
$EXPECTED,
$EXPECTED.get_datatype()
)
};
($ARRAY1:expr, $ARRAY2:expr, $DATATYPE1:expr, $DATATYPE2:expr, $OP:ident, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{
let schema = Schema::new(vec![
Field::new("a", $DATATYPE1, true),
Field::new("b", $DATATYPE2, true),
]);
let batch =
RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY1, $ARRAY2])?;
let agg = Arc::new(<$OP>::new(
col("a", &schema)?,
col("b", &schema)?,
"bla".to_string(),
$EXPECTED_DATATYPE,
));
let actual = aggregate(&batch, agg)?;
let expected = ScalarValue::from($EXPECTED);
assert_eq!(expected, actual);
Ok(())
}};
}
pub fn aggregate(
batch: &RecordBatch,
agg: Arc<dyn AggregateExpr>,
) -> Result<ScalarValue> {
let mut accum = agg.create_accumulator()?;
let expr = agg.expressions();
let values = expr
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()?;
accum.update_batch(&values)?;
accum.evaluate()
}
}