1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use crate::window::partition_evaluator::PartitionEvaluator;
use crate::window::window_expr::{BuiltinWindowState, NumRowsState};
use crate::window::{BuiltInWindowFunctionExpr, WindowAggState};
use crate::PhysicalExpr;
use arrow::array::{ArrayRef, UInt64Array};
use arrow::datatypes::{DataType, Field};
use datafusion_common::{Result, ScalarValue};
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
#[derive(Debug)]
pub struct RowNumber {
name: String,
}
impl RowNumber {
pub fn new(name: impl Into<String>) -> Self {
Self { name: name.into() }
}
}
impl BuiltInWindowFunctionExpr for RowNumber {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
let nullable = false;
let data_type = DataType::UInt64;
Ok(Field::new(self.name(), data_type, nullable))
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![]
}
fn name(&self) -> &str {
&self.name
}
fn create_evaluator(&self) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::<NumRowsEvaluator>::default())
}
fn supports_bounded_execution(&self) -> bool {
true
}
}
#[derive(Default, Debug)]
pub(crate) struct NumRowsEvaluator {
state: NumRowsState,
}
impl PartitionEvaluator for NumRowsEvaluator {
fn state(&self) -> Result<BuiltinWindowState> {
Ok(BuiltinWindowState::NumRows(self.state.clone()))
}
fn get_range(&self, state: &WindowAggState, _n_rows: usize) -> Result<Range<usize>> {
Ok(Range {
start: state.last_calculated_index,
end: state.last_calculated_index + 1,
})
}
fn evaluate_stateful(&mut self, _values: &[ArrayRef]) -> Result<ScalarValue> {
self.state.n_rows += 1;
Ok(ScalarValue::UInt64(Some(self.state.n_rows as u64)))
}
fn evaluate(&self, _values: &[ArrayRef], num_rows: usize) -> Result<ArrayRef> {
Ok(Arc::new(UInt64Array::from_iter_values(
1..(num_rows as u64) + 1,
)))
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::{cast::as_uint64_array, Result};
#[test]
fn row_number_all_null() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
None, None, None, None, None, None, None, None,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, true)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let values = row_number.evaluate_args(&batch)?;
let result = row_number
.create_evaluator()?
.evaluate(&values, batch.num_rows())?;
let result = as_uint64_array(&result)?;
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
}
#[test]
fn row_number_all_values() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
true, false, true, false, false, true, false, true,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned());
let values = row_number.evaluate_args(&batch)?;
let result = row_number
.create_evaluator()?
.evaluate(&values, batch.num_rows())?;
let result = as_uint64_array(&result)?;
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], result);
Ok(())
}
}