use crate::expressions::format_state_name;
use arrow::datatypes::{DataType, Field};
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;
use ahash::RandomState;
use arrow::array::{Array, ArrayRef};
use std::collections::HashSet;
use crate::aggregate::utils::down_cast_any_ref;
use crate::{AggregateExpr, PhysicalExpr};
use datafusion_common::ScalarValue;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::Accumulator;
#[derive(Debug)]
pub struct DistinctSum {
name: String,
data_type: DataType,
exprs: Vec<Arc<dyn PhysicalExpr>>,
}
impl DistinctSum {
pub fn new(
exprs: Vec<Arc<dyn PhysicalExpr>>,
name: String,
data_type: DataType,
) -> Self {
Self {
name,
data_type,
exprs,
}
}
}
impl AggregateExpr for DistinctSum {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new_list(
format_state_name(&self.name, "sum distinct"),
Field::new("item", self.data_type.clone(), true),
false,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.exprs.clone()
}
fn name(&self) -> &str {
&self.name
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(DistinctSumAccumulator::try_new(&self.data_type)?))
}
}
impl PartialEq<dyn Any> for DistinctSum {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.exprs.len() == x.exprs.len()
&& self
.exprs
.iter()
.zip(x.exprs.iter())
.all(|(this, other)| this.eq(other))
})
.unwrap_or(false)
}
}
#[derive(Debug)]
struct DistinctSumAccumulator {
hash_values: HashSet<ScalarValue, RandomState>,
data_type: DataType,
}
impl DistinctSumAccumulator {
pub fn try_new(data_type: &DataType) -> Result<Self> {
Ok(Self {
hash_values: HashSet::default(),
data_type: data_type.clone(),
})
}
}
impl Accumulator for DistinctSumAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
let state_out = {
let mut distinct_values = Vec::new();
self.hash_values
.iter()
.for_each(|distinct_value| distinct_values.push(distinct_value.clone()));
vec![ScalarValue::new_list(
Some(distinct_values),
self.data_type.clone(),
)]
};
Ok(state_out)
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
let arr = &values[0];
(0..values[0].len()).try_for_each(|index| {
if !arr.is_null(index) {
let v = ScalarValue::try_from_array(arr, index)?;
self.hash_values.insert(v);
}
Ok(())
})
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
let arr = &states[0];
(0..arr.len()).try_for_each(|index| {
let scalar = ScalarValue::try_from_array(arr, index)?;
if let ScalarValue::List(Some(scalar), _) = scalar {
scalar.iter().for_each(|scalar| {
if !ScalarValue::is_null(scalar) {
self.hash_values.insert(scalar.clone());
}
});
} else {
return Err(DataFusionError::Internal(
"Unexpected accumulator state".into(),
));
}
Ok(())
})
}
fn evaluate(&self) -> Result<ScalarValue> {
let mut sum_value = ScalarValue::try_from(&self.data_type)?;
for distinct_value in self.hash_values.iter() {
sum_value = sum_value.add(distinct_value)?;
}
Ok(sum_value)
}
fn size(&self) -> usize {
std::mem::size_of_val(self) + ScalarValue::size_of_hashset(&self.hash_values)
- std::mem::size_of_val(&self.hash_values)
+ self.data_type.size()
- std::mem::size_of_val(&self.data_type)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::Result;
fn run_update_batch(
return_type: DataType,
arrays: &[ArrayRef],
) -> Result<(Vec<ScalarValue>, ScalarValue)> {
let agg = DistinctSum::new(vec![], String::from("__col_name__"), return_type);
let mut accum = agg.create_accumulator()?;
accum.update_batch(arrays)?;
Ok((accum.state()?, accum.evaluate()?))
}
macro_rules! generic_test_sum_distinct {
($ARRAY:expr, $DATATYPE:expr, $EXPECTED:expr) => {{
let schema = Schema::new(vec![Field::new("a", $DATATYPE, true)]);
let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY])?;
let agg = Arc::new(DistinctSum::new(
vec![col("a", &schema)?],
"count_distinct_a".to_string(),
$EXPECTED.get_datatype(),
));
let actual = aggregate(&batch, agg)?;
let expected = ScalarValue::from($EXPECTED);
assert_eq!(expected, actual);
Ok(())
}};
}
#[test]
fn sum_distinct_update_batch() -> Result<()> {
let array_int64: ArrayRef = Arc::new(Int64Array::from(vec![1, 1, 3]));
let arrays = vec![array_int64];
let (states, result) = run_update_batch(DataType::Int64, &arrays)?;
assert_eq!(states.len(), 1);
assert_eq!(result, ScalarValue::Int64(Some(4)));
Ok(())
}
#[test]
fn sum_distinct_i32_with_nulls() -> Result<()> {
let array = Arc::new(Int32Array::from(vec![
Some(1),
Some(1),
None,
Some(2),
Some(2),
Some(3),
]));
generic_test_sum_distinct!(array, DataType::Int32, ScalarValue::from(6_i32))
}
#[test]
fn sum_distinct_u32_with_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(UInt32Array::from(vec![
Some(1_u32),
Some(1_u32),
Some(3_u32),
Some(3_u32),
None,
]));
generic_test_sum_distinct!(array, DataType::UInt32, ScalarValue::from(4_u32))
}
#[test]
fn sum_distinct_f64() -> Result<()> {
let array: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 1_f64, 3_f64, 3_f64, 3_f64]));
generic_test_sum_distinct!(array, DataType::Float64, ScalarValue::from(4_f64))
}
#[test]
fn sum_distinct_decimal_with_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..6)
.map(|i| if i == 2 { None } else { Some(i % 2) })
.collect::<Decimal128Array>()
.with_precision_and_scale(35, 0)?,
);
generic_test_sum_distinct!(
array,
DataType::Decimal128(35, 0),
ScalarValue::Decimal128(Some(1), 38, 0)
)
}
}