1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! # Median

use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::{Array, ArrayRef, UInt32Array};
use arrow::compute::sort_to_indices;
use arrow::datatypes::{DataType, Field};
use datafusion_common::{DataFusionError, Result, ScalarValue};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;

/// MEDIAN aggregate expression. This uses a lot of memory because all values need to be
/// stored in memory before a result can be computed. If an approximation is sufficient
/// then APPROX_MEDIAN provides a much more efficient solution.
#[derive(Debug)]
pub struct Median {
    name: String,
    expr: Arc<dyn PhysicalExpr>,
    data_type: DataType,
}

impl Median {
    /// Create a new MEDIAN aggregate function
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        data_type: DataType,
    ) -> Self {
        Self {
            name: name.into(),
            expr,
            data_type,
        }
    }
}

impl AggregateExpr for Median {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, self.data_type.clone(), true))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(MedianAccumulator {
            data_type: self.data_type.clone(),
            all_values: vec![],
        }))
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        //Intermediate state is a list of the elements we have collected so far
        let field = Field::new("item", self.data_type.clone(), true);
        let data_type = DataType::List(Arc::new(field));

        Ok(vec![Field::new(
            format_state_name(&self.name, "median"),
            data_type,
            true,
        )])
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn name(&self) -> &str {
        &self.name
    }
}

impl PartialEq<dyn Any> for Median {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.data_type == x.data_type
                    && self.expr.eq(&x.expr)
            })
            .unwrap_or(false)
    }
}

#[derive(Debug)]
/// The median accumulator accumulates the raw input values
/// as `ScalarValue`s
///
/// The intermediate state is represented as a List of those scalars
struct MedianAccumulator {
    data_type: DataType,
    all_values: Vec<ScalarValue>,
}

impl Accumulator for MedianAccumulator {
    fn state(&self) -> Result<Vec<ScalarValue>> {
        let state =
            ScalarValue::new_list(Some(self.all_values.clone()), self.data_type.clone());
        Ok(vec![state])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        assert_eq!(values.len(), 1);
        let array = &values[0];

        assert_eq!(array.data_type(), &self.data_type);
        self.all_values.reserve(self.all_values.len() + array.len());
        for index in 0..array.len() {
            self.all_values
                .push(ScalarValue::try_from_array(array, index)?);
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        assert_eq!(states.len(), 1);

        let array = &states[0];
        assert!(matches!(array.data_type(), DataType::List(_)));
        for index in 0..array.len() {
            match ScalarValue::try_from_array(array, index)? {
                ScalarValue::List(Some(mut values), _) => {
                    self.all_values.append(&mut values);
                }
                ScalarValue::List(None, _) => {} // skip empty state
                v => {
                    return Err(DataFusionError::Internal(format!(
                        "unexpected state in median. Expected DataType::List, got {v:?}"
                    )))
                }
            }
        }
        Ok(())
    }

    fn evaluate(&self) -> Result<ScalarValue> {
        if !self.all_values.iter().any(|v| !v.is_null()) {
            return ScalarValue::try_from(&self.data_type);
        }

        // Create an array of all the non null values and find the
        // sorted indexes
        let array = ScalarValue::iter_to_array(
            self.all_values
                .iter()
                // ignore null values
                .filter(|v| !v.is_null())
                .cloned(),
        )?;

        // find the mid point
        let len = array.len();
        let mid = len / 2;

        // only sort up to the top size/2 elements
        let limit = Some(mid + 1);
        let options = None;
        let indices = sort_to_indices(&array, options, limit)?;

        // pick the relevant indices in the original arrays
        let result = if len >= 2 && len % 2 == 0 {
            // even number of values, average the two mid points
            let s1 = scalar_at_index(&array, &indices, mid - 1)?;
            let s2 = scalar_at_index(&array, &indices, mid)?;
            match s1.add(s2)? {
                ScalarValue::Int8(Some(v)) => ScalarValue::Int8(Some(v / 2)),
                ScalarValue::Int16(Some(v)) => ScalarValue::Int16(Some(v / 2)),
                ScalarValue::Int32(Some(v)) => ScalarValue::Int32(Some(v / 2)),
                ScalarValue::Int64(Some(v)) => ScalarValue::Int64(Some(v / 2)),
                ScalarValue::UInt8(Some(v)) => ScalarValue::UInt8(Some(v / 2)),
                ScalarValue::UInt16(Some(v)) => ScalarValue::UInt16(Some(v / 2)),
                ScalarValue::UInt32(Some(v)) => ScalarValue::UInt32(Some(v / 2)),
                ScalarValue::UInt64(Some(v)) => ScalarValue::UInt64(Some(v / 2)),
                ScalarValue::Float32(Some(v)) => ScalarValue::Float32(Some(v / 2.0)),
                ScalarValue::Float64(Some(v)) => ScalarValue::Float64(Some(v / 2.0)),
                v => {
                    return Err(DataFusionError::Internal(format!(
                        "Unsupported type in MedianAccumulator: {v:?}"
                    )))
                }
            }
        } else {
            // odd number of values, pick that one
            scalar_at_index(&array, &indices, mid)?
        };

        Ok(result)
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self) + ScalarValue::size_of_vec(&self.all_values)
            - std::mem::size_of_val(&self.all_values)
            + self.data_type.size()
            - std::mem::size_of_val(&self.data_type)
    }
}

/// Given a returns `array[indicies[indicie_index]]` as a `ScalarValue`
fn scalar_at_index(
    array: &dyn Array,
    indices: &UInt32Array,
    indicies_index: usize,
) -> Result<ScalarValue> {
    let array_index = indices
        .value(indicies_index)
        .try_into()
        .expect("Convert uint32 to usize");
    ScalarValue::try_from_array(array, array_index)
}