1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utilities used in aggregates
use crate::AggregateExpr;
use arrow::array::ArrayRef;
use arrow::datatypes::{MAX_DECIMAL_FOR_EACH_PRECISION, MIN_DECIMAL_FOR_EACH_PRECISION};
use arrow_schema::DataType;
use datafusion_common::{DataFusionError, Result, ScalarValue};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;
/// Convert scalar values from an accumulator into arrays.
pub fn get_accum_scalar_values_as_arrays(
accum: &dyn Accumulator,
) -> Result<Vec<ArrayRef>> {
Ok(accum
.state()?
.iter()
.map(|s| s.to_array_of_size(1))
.collect::<Vec<_>>())
}
pub fn calculate_result_decimal_for_avg(
lit_value: i128,
count: i128,
scale: i8,
target_type: &DataType,
) -> Result<ScalarValue> {
match target_type {
DataType::Decimal128(p, s) => {
// Different precision for decimal128 can store different range of value.
// For example, the precision is 3, the max of value is `999` and the min
// value is `-999`
let (target_mul, target_min, target_max) = (
10_i128.pow(*s as u32),
MIN_DECIMAL_FOR_EACH_PRECISION[*p as usize - 1],
MAX_DECIMAL_FOR_EACH_PRECISION[*p as usize - 1],
);
let lit_scale_mul = 10_i128.pow(scale as u32);
if target_mul >= lit_scale_mul {
if let Some(value) = lit_value.checked_mul(target_mul / lit_scale_mul) {
let new_value = value / count;
if new_value >= target_min && new_value <= target_max {
Ok(ScalarValue::Decimal128(Some(new_value), *p, *s))
} else {
Err(DataFusionError::Internal(
"Arithmetic Overflow in AvgAccumulator".to_string(),
))
}
} else {
// can't convert the lit decimal to the returned data type
Err(DataFusionError::Internal(
"Arithmetic Overflow in AvgAccumulator".to_string(),
))
}
} else {
// can't convert the lit decimal to the returned data type
Err(DataFusionError::Internal(
"Arithmetic Overflow in AvgAccumulator".to_string(),
))
}
}
other => Err(DataFusionError::Internal(format!(
"Error returned data type in AvgAccumulator {other:?}"
))),
}
}
/// Downcast a `Box<dyn AggregateExpr>` or `Arc<dyn AggregateExpr>`
/// and return the inner trait object as [`Any`](std::any::Any) so
/// that it can be downcast to a specific implementation.
///
/// This method is used when implementing the `PartialEq<dyn Any>`
/// for [`AggregateExpr`] aggregation expressions and allows comparing the equality
/// between the trait objects.
pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
if any.is::<Arc<dyn AggregateExpr>>() {
any.downcast_ref::<Arc<dyn AggregateExpr>>()
.unwrap()
.as_any()
} else if any.is::<Box<dyn AggregateExpr>>() {
any.downcast_ref::<Box<dyn AggregateExpr>>()
.unwrap()
.as_any()
} else {
any
}
}