1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

#[macro_use]
mod binary;
mod case;
mod cast;
mod column;
mod datetime;
mod get_indexed_field;
mod in_list;
mod is_not_null;
mod is_null;
mod like;
mod literal;
mod negative;
mod no_op;
mod not;
mod nullif;
mod try_cast;

/// Module with some convenient methods used in expression building
pub mod helpers {
    pub use crate::aggregate::min_max::{max, min};
}

pub use crate::aggregate::approx_distinct::ApproxDistinct;
pub use crate::aggregate::approx_median::ApproxMedian;
pub use crate::aggregate::approx_percentile_cont::ApproxPercentileCont;
pub use crate::aggregate::approx_percentile_cont_with_weight::ApproxPercentileContWithWeight;
pub use crate::aggregate::array_agg::ArrayAgg;
pub use crate::aggregate::array_agg_distinct::DistinctArrayAgg;
pub use crate::aggregate::array_agg_ordered::OrderSensitiveArrayAgg;
pub use crate::aggregate::average::{Avg, AvgAccumulator};
pub use crate::aggregate::bit_and_or_xor::{BitAnd, BitOr, BitXor, DistinctBitXor};
pub use crate::aggregate::bool_and_or::{BoolAnd, BoolOr};
pub use crate::aggregate::build_in::create_aggregate_expr;
pub use crate::aggregate::correlation::Correlation;
pub use crate::aggregate::count::Count;
pub use crate::aggregate::count_distinct::DistinctCount;
pub use crate::aggregate::covariance::{Covariance, CovariancePop};
pub use crate::aggregate::first_last::{FirstValue, LastValue};
pub use crate::aggregate::grouping::Grouping;
pub use crate::aggregate::median::Median;
pub use crate::aggregate::min_max::{Max, Min};
pub use crate::aggregate::min_max::{MaxAccumulator, MinAccumulator};
pub use crate::aggregate::stats::StatsType;
pub use crate::aggregate::stddev::{Stddev, StddevPop};
pub use crate::aggregate::sum::Sum;
pub use crate::aggregate::sum_distinct::DistinctSum;
pub use crate::aggregate::variance::{Variance, VariancePop};

pub use crate::window::cume_dist::cume_dist;
pub use crate::window::cume_dist::CumeDist;
pub use crate::window::lead_lag::WindowShift;
pub use crate::window::lead_lag::{lag, lead};
pub use crate::window::nth_value::NthValue;
pub use crate::window::ntile::Ntile;
pub use crate::window::rank::{dense_rank, percent_rank, rank};
pub use crate::window::rank::{Rank, RankType};
pub use crate::window::row_number::RowNumber;

pub use binary::{binary, BinaryExpr};
pub use case::{case, CaseExpr};
pub use cast::{cast, cast_column, cast_with_options, CastExpr};
pub use column::{col, Column, UnKnownColumn};
pub use datetime::{date_time_interval_expr, DateTimeIntervalExpr};
pub use get_indexed_field::GetIndexedFieldExpr;
pub use in_list::{in_list, InListExpr};
pub use is_not_null::{is_not_null, IsNotNullExpr};
pub use is_null::{is_null, IsNullExpr};
pub use like::{like, LikeExpr};
pub use literal::{lit, Literal};
pub use negative::{negative, NegativeExpr};
pub use no_op::NoOp;
pub use not::{not, NotExpr};
pub use nullif::nullif_func;
pub use try_cast::{try_cast, TryCastExpr};

/// returns the name of the state
pub fn format_state_name(name: &str, state_name: &str) -> String {
    format!("{name}[{state_name}]")
}
pub use crate::PhysicalSortExpr;

#[cfg(test)]
pub(crate) mod tests {
    use crate::AggregateExpr;
    use arrow::record_batch::RecordBatch;
    use datafusion_common::Result;
    use datafusion_common::ScalarValue;
    use std::sync::Arc;

    /// macro to perform an aggregation and verify the result.
    #[macro_export]
    macro_rules! generic_test_op {
        ($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr) => {
            generic_test_op!($ARRAY, $DATATYPE, $OP, $EXPECTED, $EXPECTED.get_datatype())
        };
        ($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{
            let schema = Schema::new(vec![Field::new("a", $DATATYPE, true)]);

            let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY])?;

            let agg = Arc::new(<$OP>::new(
                col("a", &schema)?,
                "bla".to_string(),
                $EXPECTED_DATATYPE,
            ));
            let actual = aggregate(&batch, agg)?;
            let expected = ScalarValue::from($EXPECTED);

            assert_eq!(expected, actual);

            Ok(()) as Result<(), DataFusionError>
        }};
    }

    /// macro to perform an aggregation with two inputs and verify the result.
    #[macro_export]
    macro_rules! generic_test_op2 {
        ($ARRAY1:expr, $ARRAY2:expr, $DATATYPE1:expr, $DATATYPE2:expr, $OP:ident, $EXPECTED:expr) => {
            generic_test_op2!(
                $ARRAY1,
                $ARRAY2,
                $DATATYPE1,
                $DATATYPE2,
                $OP,
                $EXPECTED,
                $EXPECTED.get_datatype()
            )
        };
        ($ARRAY1:expr, $ARRAY2:expr, $DATATYPE1:expr, $DATATYPE2:expr, $OP:ident, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{
            let schema = Schema::new(vec![
                Field::new("a", $DATATYPE1, true),
                Field::new("b", $DATATYPE2, true),
            ]);
            let batch =
                RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY1, $ARRAY2])?;

            let agg = Arc::new(<$OP>::new(
                col("a", &schema)?,
                col("b", &schema)?,
                "bla".to_string(),
                $EXPECTED_DATATYPE,
            ));
            let actual = aggregate(&batch, agg)?;
            let expected = ScalarValue::from($EXPECTED);

            assert_eq!(expected, actual);

            Ok(())
        }};
    }

    pub fn aggregate(
        batch: &RecordBatch,
        agg: Arc<dyn AggregateExpr>,
    ) -> Result<ScalarValue> {
        let mut accum = agg.create_accumulator()?;
        let expr = agg.expressions();
        let values = expr
            .iter()
            .map(|e| e.evaluate(batch))
            .map(|r| r.map(|v| v.into_array(batch.num_rows())))
            .collect::<Result<Vec<_>>>()?;
        accum.update_batch(&values)?;
        accum.evaluate()
    }
}