1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical exec for built-in window function expressions.

use std::any::Any;
use std::ops::Range;
use std::sync::Arc;

use super::BuiltInWindowFunctionExpr;
use super::WindowExpr;
use crate::window::window_expr::WindowFn;
use crate::window::{PartitionBatches, PartitionWindowAggStates, WindowState};
use crate::{expressions::PhysicalSortExpr, reverse_order_bys, PhysicalExpr};
use arrow::array::{new_empty_array, ArrayRef};
use arrow::compute::SortOptions;
use arrow::datatypes::Field;
use arrow::record_batch::RecordBatch;
use datafusion_common::utils::evaluate_partition_ranges;
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::window_state::WindowAggState;
use datafusion_expr::window_state::WindowFrameContext;
use datafusion_expr::WindowFrame;

/// A window expr that takes the form of a [`BuiltInWindowFunctionExpr`].
#[derive(Debug)]
pub struct BuiltInWindowExpr {
    expr: Arc<dyn BuiltInWindowFunctionExpr>,
    partition_by: Vec<Arc<dyn PhysicalExpr>>,
    order_by: Vec<PhysicalSortExpr>,
    window_frame: Arc<WindowFrame>,
}

impl BuiltInWindowExpr {
    /// create a new built-in window function expression
    pub fn new(
        expr: Arc<dyn BuiltInWindowFunctionExpr>,
        partition_by: &[Arc<dyn PhysicalExpr>],
        order_by: &[PhysicalSortExpr],
        window_frame: Arc<WindowFrame>,
    ) -> Self {
        Self {
            expr,
            partition_by: partition_by.to_vec(),
            order_by: order_by.to_vec(),
            window_frame,
        }
    }

    /// Get BuiltInWindowFunction expr of BuiltInWindowExpr
    pub fn get_built_in_func_expr(&self) -> &Arc<dyn BuiltInWindowFunctionExpr> {
        &self.expr
    }
}

impl WindowExpr for BuiltInWindowExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.expr.name()
    }

    fn field(&self) -> Result<Field> {
        self.expr.field()
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.expr.expressions()
    }

    fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.partition_by
    }

    fn order_by(&self) -> &[PhysicalSortExpr] {
        &self.order_by
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        let mut evaluator = self.expr.create_evaluator()?;
        let num_rows = batch.num_rows();
        if evaluator.uses_window_frame() {
            let sort_options: Vec<SortOptions> =
                self.order_by.iter().map(|o| o.options).collect();
            let mut row_wise_results = vec![];

            let (values, order_bys) = self.get_values_orderbys(batch)?;
            let mut window_frame_ctx =
                WindowFrameContext::new(self.window_frame.clone(), sort_options);
            let mut last_range = Range { start: 0, end: 0 };
            // We iterate on each row to calculate window frame range and and window function result
            for idx in 0..num_rows {
                let range = window_frame_ctx.calculate_range(
                    &order_bys,
                    &last_range,
                    num_rows,
                    idx,
                )?;
                let value = evaluator.evaluate(&values, &range)?;
                row_wise_results.push(value);
                last_range = range;
            }
            ScalarValue::iter_to_array(row_wise_results.into_iter())
        } else if evaluator.include_rank() {
            let columns = self.sort_columns(batch)?;
            let sort_partition_points = evaluate_partition_ranges(num_rows, &columns)?;
            evaluator.evaluate_all_with_rank(num_rows, &sort_partition_points)
        } else {
            let (values, _) = self.get_values_orderbys(batch)?;
            evaluator.evaluate_all(&values, num_rows)
        }
    }

    /// Evaluate the window function against the batch. This function facilitates
    /// stateful, bounded-memory implementations.
    fn evaluate_stateful(
        &self,
        partition_batches: &PartitionBatches,
        window_agg_state: &mut PartitionWindowAggStates,
    ) -> Result<()> {
        let field = self.expr.field()?;
        let out_type = field.data_type();
        let sort_options = self.order_by.iter().map(|o| o.options).collect::<Vec<_>>();
        for (partition_row, partition_batch_state) in partition_batches.iter() {
            let window_state =
                if let Some(window_state) = window_agg_state.get_mut(partition_row) {
                    window_state
                } else {
                    let evaluator = self.expr.create_evaluator()?;
                    window_agg_state
                        .entry(partition_row.clone())
                        .or_insert(WindowState {
                            state: WindowAggState::new(out_type)?,
                            window_fn: WindowFn::Builtin(evaluator),
                        })
                };
            let evaluator = match &mut window_state.window_fn {
                WindowFn::Builtin(evaluator) => evaluator,
                _ => unreachable!(),
            };
            let state = &mut window_state.state;

            let (values, order_bys) =
                self.get_values_orderbys(&partition_batch_state.record_batch)?;

            // We iterate on each row to perform a running calculation.
            let record_batch = &partition_batch_state.record_batch;
            let num_rows = record_batch.num_rows();
            let sort_partition_points = if evaluator.include_rank() {
                let columns = self.sort_columns(record_batch)?;
                evaluate_partition_ranges(num_rows, &columns)?
            } else {
                vec![]
            };
            let mut row_wise_results: Vec<ScalarValue> = vec![];
            for idx in state.last_calculated_index..num_rows {
                let frame_range = if evaluator.uses_window_frame() {
                    state
                        .window_frame_ctx
                        .get_or_insert_with(|| {
                            WindowFrameContext::new(
                                self.window_frame.clone(),
                                sort_options.clone(),
                            )
                        })
                        .calculate_range(
                            &order_bys,
                            // Start search from the last range
                            &state.window_frame_range,
                            num_rows,
                            idx,
                        )
                } else {
                    evaluator.get_range(idx, num_rows)
                }?;

                // Exit if the range extends all the way:
                if frame_range.end == num_rows && !partition_batch_state.is_end {
                    break;
                }
                // Update last range
                state.window_frame_range = frame_range;
                evaluator.update_state(state, idx, &order_bys, &sort_partition_points)?;
                row_wise_results
                    .push(evaluator.evaluate(&values, &state.window_frame_range)?);
            }
            let out_col = if row_wise_results.is_empty() {
                new_empty_array(out_type)
            } else {
                ScalarValue::iter_to_array(row_wise_results.into_iter())?
            };

            state.update(&out_col, partition_batch_state)?;
            if self.window_frame.start_bound.is_unbounded() {
                evaluator.memoize(state)?;
            }
        }
        Ok(())
    }

    fn get_window_frame(&self) -> &Arc<WindowFrame> {
        &self.window_frame
    }

    fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>> {
        self.expr.reverse_expr().map(|reverse_expr| {
            Arc::new(BuiltInWindowExpr::new(
                reverse_expr,
                &self.partition_by.clone(),
                &reverse_order_bys(&self.order_by),
                Arc::new(self.window_frame.reverse()),
            )) as _
        })
    }

    fn uses_bounded_memory(&self) -> bool {
        if let Ok(evaluator) = self.expr.create_evaluator() {
            evaluator.supports_bounded_execution()
                && (!evaluator.uses_window_frame()
                    || !self.window_frame.end_bound.is_unbounded())
        } else {
            false
        }
    }
}