1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::expressions::Column;
use crate::intervals::cp_solver::PropagationResult;
use crate::intervals::{cardinality_ratio, ExprIntervalGraph, Interval, IntervalBound};
use crate::utils::collect_columns;
use arrow::array::{make_array, Array, ArrayRef, BooleanArray, MutableArrayData};
use arrow::compute::{and_kleene, filter_record_batch, is_not_null, SlicesIterator};
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::utils::DataPtr;
use datafusion_common::{ColumnStatistics, DataFusionError, Result, ScalarValue};
use datafusion_expr::ColumnarValue;
use std::any::Any;
use std::fmt::{Debug, Display};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
/// Expression that can be evaluated against a RecordBatch
/// A Physical expression knows its type, nullability and how to evaluate itself.
pub trait PhysicalExpr: Send + Sync + Display + Debug + PartialEq<dyn Any> {
/// Returns the physical expression as [`Any`](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Get the data type of this expression, given the schema of the input
fn data_type(&self, input_schema: &Schema) -> Result<DataType>;
/// Determine whether this expression is nullable, given the schema of the input
fn nullable(&self, input_schema: &Schema) -> Result<bool>;
/// Evaluate an expression against a RecordBatch
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue>;
/// Evaluate an expression against a RecordBatch after first applying a
/// validity array
fn evaluate_selection(
&self,
batch: &RecordBatch,
selection: &BooleanArray,
) -> Result<ColumnarValue> {
let tmp_batch = filter_record_batch(batch, selection)?;
let tmp_result = self.evaluate(&tmp_batch)?;
// All values from the `selection` filter are true.
if batch.num_rows() == tmp_batch.num_rows() {
return Ok(tmp_result);
}
if let ColumnarValue::Array(a) = tmp_result {
let result = scatter(selection, a.as_ref())?;
Ok(ColumnarValue::Array(result))
} else {
Ok(tmp_result)
}
}
/// Get a list of child PhysicalExpr that provide the input for this expr.
fn children(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Returns a new PhysicalExpr where all children were replaced by new exprs.
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>>;
/// Computes bounds for the expression using interval arithmetic.
fn evaluate_bounds(&self, _children: &[&Interval]) -> Result<Interval> {
Err(DataFusionError::NotImplemented(format!(
"Not implemented for {self}"
)))
}
/// Updates/shrinks bounds for the expression using interval arithmetic.
/// If constraint propagation reveals an infeasibility, returns [None] for
/// the child causing infeasibility. If none of the children intervals
/// change, may return an empty vector instead of cloning `children`.
fn propagate_constraints(
&self,
_interval: &Interval,
_children: &[&Interval],
) -> Result<Vec<Option<Interval>>> {
Err(DataFusionError::NotImplemented(format!(
"Not implemented for {self}"
)))
}
/// Update the hash `state` with this expression requirements from
/// [`Hash`].
///
/// This method is required to support hashing [`PhysicalExpr`]s. To
/// implement it, typically the type implementing
/// [`PhysicalExpr`] implements [`Hash`] and
/// then the following boiler plate is used:
///
/// # Example:
/// ```
/// // User defined expression that derives Hash
/// #[derive(Hash, Debug, PartialEq, Eq)]
/// struct MyExpr {
/// val: u64
/// }
///
/// // impl PhysicalExpr {
/// // ...
/// # impl MyExpr {
/// // Boiler plate to call the derived Hash impl
/// fn dyn_hash(&self, state: &mut dyn std::hash::Hasher) {
/// use std::hash::Hash;
/// let mut s = state;
/// self.hash(&mut s);
/// }
/// // }
/// # }
/// ```
/// Note: [`PhysicalExpr`] is not constrained by [`Hash`]
/// directly because it must remain object safe.
fn dyn_hash(&self, _state: &mut dyn Hasher);
}
/// Attempts to refine column boundaries and compute a selectivity value.
///
/// The function accepts boundaries of the input columns in the `context` parameter.
/// It then tries to tighten these boundaries based on the provided `expr`.
/// The resulting selectivity value is calculated by comparing the initial and final boundaries.
/// The computation assumes that the data within the column is uniformly distributed and not sorted.
///
/// # Arguments
///
/// * `context` - The context holding input column boundaries.
/// * `expr` - The expression used to shrink the column boundaries.
///
/// # Returns
///
/// * `AnalysisContext` constructed by pruned boundaries and a selectivity value.
pub fn analyze(
expr: &Arc<dyn PhysicalExpr>,
context: AnalysisContext,
) -> Result<AnalysisContext> {
let target_boundaries = context.boundaries.ok_or_else(|| {
DataFusionError::Internal("No column exists at the input to filter".to_string())
})?;
let mut graph = ExprIntervalGraph::try_new(expr.clone())?;
let columns: Vec<Arc<dyn PhysicalExpr>> = collect_columns(expr)
.into_iter()
.map(|c| Arc::new(c) as Arc<dyn PhysicalExpr>)
.collect();
let target_expr_and_indices: Vec<(Arc<dyn PhysicalExpr>, usize)> =
graph.gather_node_indices(columns.as_slice());
let mut target_indices_and_boundaries: Vec<(usize, Interval)> =
target_expr_and_indices
.iter()
.filter_map(|(expr, i)| {
target_boundaries.iter().find_map(|bound| {
expr.as_any()
.downcast_ref::<Column>()
.filter(|expr_column| bound.column.eq(*expr_column))
.map(|_| (*i, bound.interval.clone()))
})
})
.collect();
match graph.update_ranges(&mut target_indices_and_boundaries)? {
PropagationResult::Success => {
shrink_boundaries(expr, graph, target_boundaries, target_expr_and_indices)
}
PropagationResult::Infeasible => {
Ok(AnalysisContext::new(target_boundaries).with_selectivity(0.0))
}
PropagationResult::CannotPropagate => {
Ok(AnalysisContext::new(target_boundaries).with_selectivity(1.0))
}
}
}
/// If the `PropagationResult` indicates success, this function calculates the
/// selectivity value by comparing the initial and final column boundaries.
/// Following this, it constructs and returns a new `AnalysisContext` with the
/// updated parameters.
fn shrink_boundaries(
expr: &Arc<dyn PhysicalExpr>,
mut graph: ExprIntervalGraph,
mut target_boundaries: Vec<ExprBoundaries>,
target_expr_and_indices: Vec<(Arc<dyn PhysicalExpr>, usize)>,
) -> Result<AnalysisContext> {
let initial_boundaries = target_boundaries.clone();
target_expr_and_indices.iter().for_each(|(expr, i)| {
if let Some(column) = expr.as_any().downcast_ref::<Column>() {
if let Some(bound) = target_boundaries
.iter_mut()
.find(|bound| bound.column.eq(column))
{
bound.interval = graph.get_interval(*i);
};
}
});
let graph_nodes = graph.gather_node_indices(&[expr.clone()]);
let (_, root_index) = graph_nodes.first().ok_or_else(|| {
DataFusionError::Internal("Error in constructing predicate graph".to_string())
})?;
let final_result = graph.get_interval(*root_index);
let selectivity = calculate_selectivity(
&final_result.lower.value,
&final_result.upper.value,
&target_boundaries,
&initial_boundaries,
)?;
if !(0.0..=1.0).contains(&selectivity) {
return Err(DataFusionError::Internal(format!(
"Selectivity is out of limit: {}",
selectivity
)));
}
Ok(AnalysisContext::new(target_boundaries).with_selectivity(selectivity))
}
/// This function calculates the filter predicate's selectivity by comparing
/// the initial and pruned column boundaries. Selectivity is defined as the
/// ratio of rows in a table that satisfy the filter's predicate.
///
/// An exact propagation result at the root, i.e. `[true, true]` or `[false, false]`,
/// leads to early exit (returning a selectivity value of either 1.0 or 0.0). In such
/// a case, `[true, true]` indicates that all data values satisfy the predicate (hence,
/// selectivity is 1.0), and `[false, false]` suggests that no data value meets the
/// predicate (therefore, selectivity is 0.0).
fn calculate_selectivity(
lower_value: &ScalarValue,
upper_value: &ScalarValue,
target_boundaries: &[ExprBoundaries],
initial_boundaries: &[ExprBoundaries],
) -> Result<f64> {
match (lower_value, upper_value) {
(ScalarValue::Boolean(Some(true)), ScalarValue::Boolean(Some(true))) => Ok(1.0),
(ScalarValue::Boolean(Some(false)), ScalarValue::Boolean(Some(false))) => Ok(0.0),
_ => {
// Since the intervals are assumed uniform and the values
// are not correlated, we need to multiply the selectivities
// of multiple columns to get the overall selectivity.
target_boundaries.iter().enumerate().try_fold(
1.0,
|acc, (i, ExprBoundaries { interval, .. })| {
let temp =
cardinality_ratio(&initial_boundaries[i].interval, interval)?;
Ok(acc * temp)
},
)
}
}
}
impl Hash for dyn PhysicalExpr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.dyn_hash(state);
}
}
/// Shared [`PhysicalExpr`].
pub type PhysicalExprRef = Arc<dyn PhysicalExpr>;
/// The shared context used during the analysis of an expression. Includes
/// the boundaries for all known columns.
#[derive(Clone, Debug, PartialEq)]
pub struct AnalysisContext {
// A list of known column boundaries, ordered by the index
// of the column in the current schema.
pub boundaries: Option<Vec<ExprBoundaries>>,
/// The estimated percentage of rows that this expression would select, if
/// it were to be used as a boolean predicate on a filter. The value will be
/// between 0.0 (selects nothing) and 1.0 (selects everything).
pub selectivity: Option<f64>,
}
impl AnalysisContext {
pub fn new(boundaries: Vec<ExprBoundaries>) -> Self {
Self {
boundaries: Some(boundaries),
selectivity: None,
}
}
pub fn with_selectivity(mut self, selectivity: f64) -> Self {
self.selectivity = Some(selectivity);
self
}
/// Create a new analysis context from column statistics.
pub fn from_statistics(
input_schema: &Schema,
statistics: &[ColumnStatistics],
) -> Self {
let mut column_boundaries = vec![];
for (idx, stats) in statistics.iter().enumerate() {
column_boundaries.push(ExprBoundaries::from_column(
stats,
input_schema.fields()[idx].name().clone(),
idx,
));
}
Self::new(column_boundaries)
}
}
/// Represents the boundaries of the resulting value from a physical expression,
/// if it were to be an expression, if it were to be evaluated.
#[derive(Clone, Debug, PartialEq)]
pub struct ExprBoundaries {
pub column: Column,
/// Minimum and maximum values this expression can have.
pub interval: Interval,
/// Maximum number of distinct values this expression can produce, if known.
pub distinct_count: Option<usize>,
}
impl ExprBoundaries {
/// Create a new `ExprBoundaries` object from column level statistics.
pub fn from_column(stats: &ColumnStatistics, col: String, index: usize) -> Self {
Self {
column: Column::new(&col, index),
interval: Interval::new(
IntervalBound::new(
stats.min_value.clone().unwrap_or(ScalarValue::Null),
false,
),
IntervalBound::new(
stats.max_value.clone().unwrap_or(ScalarValue::Null),
false,
),
),
distinct_count: stats.distinct_count,
}
}
}
/// Returns a copy of this expr if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `PhysicalExpr::children()`.
pub fn with_new_children_if_necessary(
expr: Arc<dyn PhysicalExpr>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
let old_children = expr.children();
if children.len() != old_children.len() {
Err(DataFusionError::Internal(
"PhysicalExpr: Wrong number of children".to_string(),
))
} else if children.is_empty()
|| children
.iter()
.zip(old_children.iter())
.any(|(c1, c2)| !Arc::data_ptr_eq(c1, c2))
{
expr.with_new_children(children)
} else {
Ok(expr)
}
}
pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
if any.is::<Arc<dyn PhysicalExpr>>() {
any.downcast_ref::<Arc<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else if any.is::<Box<dyn PhysicalExpr>>() {
any.downcast_ref::<Box<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else {
any
}
}
/// Scatter `truthy` array by boolean mask. When the mask evaluates `true`, next values of `truthy`
/// are taken, when the mask evaluates `false` values null values are filled.
///
/// # Arguments
/// * `mask` - Boolean values used to determine where to put the `truthy` values
/// * `truthy` - All values of this array are to scatter according to `mask` into final result.
fn scatter(mask: &BooleanArray, truthy: &dyn Array) -> Result<ArrayRef> {
let truthy = truthy.to_data();
// update the mask so that any null values become false
// (SlicesIterator doesn't respect nulls)
let mask = and_kleene(mask, &is_not_null(mask)?)?;
let mut mutable = MutableArrayData::new(vec![&truthy], true, mask.len());
// the SlicesIterator slices only the true values. So the gaps left by this iterator we need to
// fill with falsy values
// keep track of how much is filled
let mut filled = 0;
// keep track of current position we have in truthy array
let mut true_pos = 0;
SlicesIterator::new(&mask).for_each(|(start, end)| {
// the gap needs to be filled with nulls
if start > filled {
mutable.extend_nulls(start - filled);
}
// fill with truthy values
let len = end - start;
mutable.extend(0, true_pos, true_pos + len);
true_pos += len;
filled = end;
});
// the remaining part is falsy
if filled < mask.len() {
mutable.extend_nulls(mask.len() - filled);
}
let data = mutable.freeze();
Ok(make_array(data))
}
#[macro_export]
// If the given expression is None, return the given context
// without setting the boundaries.
macro_rules! analysis_expect {
($context: ident, $expr: expr) => {
match $expr {
Some(expr) => expr,
None => return Ok($context.with_boundaries(None)),
}
};
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use super::*;
use arrow::array::Int32Array;
use datafusion_common::{
cast::{as_boolean_array, as_int32_array},
Result,
};
#[test]
fn scatter_int() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
let mask = BooleanArray::from(vec![true, true, false, false, true]);
// the output array is expected to be the same length as the mask array
let expected =
Int32Array::from_iter(vec![Some(1), Some(10), None, None, Some(11)]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_int_end_with_false() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
let mask = BooleanArray::from(vec![true, false, true, false, false, false]);
// output should be same length as mask
let expected =
Int32Array::from_iter(vec![Some(1), None, Some(10), None, None, None]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_with_null_mask() -> Result<()> {
let truthy = Arc::new(Int32Array::from(vec![1, 10, 11]));
let mask: BooleanArray = vec![Some(false), None, Some(true), Some(true), None]
.into_iter()
.collect();
// output should treat nulls as though they are false
let expected = Int32Array::from_iter(vec![None, None, Some(1), Some(10), None]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_int32_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
#[test]
fn scatter_boolean() -> Result<()> {
let truthy = Arc::new(BooleanArray::from(vec![false, false, false, true]));
let mask = BooleanArray::from(vec![true, true, false, false, true]);
// the output array is expected to be the same length as the mask array
let expected = BooleanArray::from_iter(vec![
Some(false),
Some(false),
None,
None,
Some(false),
]);
let result = scatter(&mask, truthy.as_ref())?;
let result = as_boolean_array(&result)?;
assert_eq!(&expected, result);
Ok(())
}
}