use arrow::array::{AsArray, PrimitiveBuilder};
use log::debug;
use std::any::Any;
use std::convert::TryFrom;
use std::sync::Arc;
use crate::aggregate::groups_accumulator::accumulate::NullState;
use crate::aggregate::sum;
use crate::aggregate::sum::sum_batch;
use crate::aggregate::utils::calculate_result_decimal_for_avg;
use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, GroupsAccumulator, PhysicalExpr};
use arrow::compute;
use arrow::datatypes::{DataType, Decimal128Type, Float64Type, UInt64Type};
use arrow::{
array::{ArrayRef, UInt64Array},
datatypes::Field,
};
use arrow_array::{
Array, ArrowNativeTypeOp, ArrowNumericType, ArrowPrimitiveType, PrimitiveArray,
};
use datafusion_common::{downcast_value, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::Accumulator;
use super::groups_accumulator::EmitTo;
use super::utils::{adjust_output_array, Decimal128Averager};
#[derive(Debug, Clone)]
pub struct Avg {
name: String,
expr: Arc<dyn PhysicalExpr>,
pub sum_data_type: DataType,
rt_data_type: DataType,
pub pre_cast_to_sum_type: bool,
}
impl Avg {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
sum_data_type: DataType,
) -> Self {
Self::new_with_pre_cast(expr, name, sum_data_type.clone(), sum_data_type, false)
}
pub fn new_with_pre_cast(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
sum_data_type: DataType,
rt_data_type: DataType,
cast_to_sum_type: bool,
) -> Self {
assert!(matches!(
sum_data_type,
DataType::Float64 | DataType::Decimal128(_, _) | DataType::Decimal256(_, _)
));
assert!(matches!(
rt_data_type,
DataType::Float64 | DataType::Decimal128(_, _) | DataType::Decimal256(_, _)
));
Self {
name: name.into(),
expr,
sum_data_type,
rt_data_type,
pre_cast_to_sum_type: cast_to_sum_type,
}
}
}
impl AggregateExpr for Avg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.rt_data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
&self.sum_data_type,
&self.rt_data_type,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::UInt64,
true,
),
Field::new(
format_state_name(&self.name, "sum"),
self.sum_data_type.clone(),
true,
),
])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
Some(Arc::new(self.clone()))
}
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
&self.sum_data_type,
&self.rt_data_type,
)?))
}
fn groups_accumulator_supported(&self) -> bool {
use DataType::*;
matches!(&self.rt_data_type, Float64 | Decimal128(_, _))
}
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
use DataType::*;
match (&self.sum_data_type, &self.rt_data_type) {
(Float64, Float64) => {
Ok(Box::new(AvgGroupsAccumulator::<Float64Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
|sum: f64, count: u64| Ok(sum / count as f64),
)))
}
(
Decimal128(_sum_precision, sum_scale),
Decimal128(target_precision, target_scale),
) => {
let decimal_averager = Decimal128Averager::try_new(
*sum_scale,
*target_precision,
*target_scale,
)?;
let avg_fn =
move |sum: i128, count: u64| decimal_averager.avg(sum, count as i128);
Ok(Box::new(AvgGroupsAccumulator::<Decimal128Type, _>::new(
&self.sum_data_type,
&self.rt_data_type,
avg_fn,
)))
}
_ => Err(DataFusionError::NotImplemented(format!(
"AvgGroupsAccumulator for ({} --> {})",
self.sum_data_type, self.rt_data_type,
))),
}
}
}
impl PartialEq<dyn Any> for Avg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.sum_data_type == x.sum_data_type
&& self.rt_data_type == x.rt_data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
#[derive(Debug)]
pub struct AvgAccumulator {
sum: ScalarValue,
sum_data_type: DataType,
return_data_type: DataType,
count: u64,
}
impl AvgAccumulator {
pub fn try_new(datatype: &DataType, return_data_type: &DataType) -> Result<Self> {
Ok(Self {
sum: ScalarValue::try_from(datatype)?,
sum_data_type: datatype.clone(),
return_data_type: return_data_type.clone(),
count: 0,
})
}
}
impl Accumulator for AvgAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![ScalarValue::from(self.count), self.sum.clone()])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = &values[0];
self.count += (values.len() - values.null_count()) as u64;
self.sum = self
.sum
.add(&sum::sum_batch(values, &self.sum_data_type)?)?;
Ok(())
}
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = &values[0];
self.count -= (values.len() - values.null_count()) as u64;
let delta = sum_batch(values, &self.sum.get_datatype())?;
self.sum = self.sum.sub(&delta)?;
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], UInt64Array);
self.count += compute::sum(counts).unwrap_or(0);
self.sum = self
.sum
.add(&sum::sum_batch(&states[1], &self.sum_data_type)?)?;
Ok(())
}
fn evaluate(&self) -> Result<ScalarValue> {
match self.sum {
ScalarValue::Float64(e) => {
Ok(ScalarValue::Float64(e.map(|f| f / self.count as f64)))
}
ScalarValue::Decimal128(value, _, scale) => {
match value {
None => match &self.return_data_type {
DataType::Decimal128(p, s) => {
Ok(ScalarValue::Decimal128(None, *p, *s))
}
other => Err(DataFusionError::Internal(format!(
"Error returned data type in AvgAccumulator {other:?}"
))),
},
Some(value) => {
calculate_result_decimal_for_avg(
value,
self.count as i128,
scale,
&self.return_data_type,
)
}
}
}
_ => Err(DataFusionError::Internal(
"Sum should be f64 or decimal128 on average".to_string(),
)),
}
}
fn supports_retract_batch(&self) -> bool {
true
}
fn size(&self) -> usize {
std::mem::size_of_val(self) - std::mem::size_of_val(&self.sum) + self.sum.size()
}
}
#[derive(Debug)]
struct AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
sum_data_type: DataType,
return_data_type: DataType,
counts: Vec<u64>,
sums: Vec<T::Native>,
null_state: NullState,
avg_fn: F,
}
impl<T, F> AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
pub fn new(sum_data_type: &DataType, return_data_type: &DataType, avg_fn: F) -> Self {
debug!(
"AvgGroupsAccumulator ({}, sum type: {sum_data_type:?}) --> {return_data_type:?}",
std::any::type_name::<T>()
);
Self {
return_data_type: return_data_type.clone(),
sum_data_type: sum_data_type.clone(),
counts: vec![],
sums: vec![],
null_state: NullState::new(),
avg_fn,
}
}
}
impl<T, F> GroupsAccumulator for AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, u64) -> Result<T::Native> + Send,
{
fn update_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 1, "single argument to update_batch");
let values = values[0].as_primitive::<T>();
self.counts.resize(total_num_groups, 0);
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
values,
opt_filter,
total_num_groups,
|group_index, new_value| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
self.counts[group_index] += 1;
},
);
Ok(())
}
fn merge_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
opt_filter: Option<&arrow_array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 2, "two arguments to merge_batch");
let partial_counts = values[0].as_primitive::<UInt64Type>();
let partial_sums = values[1].as_primitive::<T>();
self.counts.resize(total_num_groups, 0);
self.null_state.accumulate(
group_indices,
partial_counts,
opt_filter,
total_num_groups,
|group_index, partial_count| {
self.counts[group_index] += partial_count;
},
);
self.sums.resize(total_num_groups, T::default_value());
self.null_state.accumulate(
group_indices,
partial_sums,
opt_filter,
total_num_groups,
|group_index, new_value: <T as ArrowPrimitiveType>::Native| {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
},
);
Ok(())
}
fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
let counts = emit_to.take_needed(&mut self.counts);
let sums = emit_to.take_needed(&mut self.sums);
let nulls = self.null_state.build(emit_to);
assert_eq!(nulls.len(), sums.len());
assert_eq!(counts.len(), sums.len());
let array: PrimitiveArray<T> = if nulls.null_count() > 0 {
let mut builder = PrimitiveBuilder::<T>::with_capacity(nulls.len());
let iter = sums.into_iter().zip(counts.into_iter()).zip(nulls.iter());
for ((sum, count), is_valid) in iter {
if is_valid {
builder.append_value((self.avg_fn)(sum, count)?)
} else {
builder.append_null();
}
}
builder.finish()
} else {
let averages: Vec<T::Native> = sums
.into_iter()
.zip(counts.into_iter())
.map(|(sum, count)| (self.avg_fn)(sum, count))
.collect::<Result<Vec<_>>>()?;
PrimitiveArray::new(averages.into(), Some(nulls)) };
let array = adjust_output_array(&self.return_data_type, Arc::new(array))?;
Ok(array)
}
fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
let nulls = self.null_state.build(emit_to);
let nulls = Some(nulls);
let counts = emit_to.take_needed(&mut self.counts);
let counts = UInt64Array::new(counts.into(), nulls.clone()); let sums = emit_to.take_needed(&mut self.sums);
let sums = PrimitiveArray::<T>::new(sums.into(), nulls); let sums = adjust_output_array(&self.sum_data_type, Arc::new(sums))?;
Ok(vec![
Arc::new(counts) as ArrayRef,
Arc::new(sums) as ArrayRef,
])
}
fn size(&self) -> usize {
self.counts.capacity() * std::mem::size_of::<u64>()
+ self.sums.capacity() * std::mem::size_of::<T>()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use crate::generic_test_op;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
use datafusion_common::Result;
#[test]
fn avg_decimal() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..7)
.map(Some)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(Some(35000), 14, 4)
)
}
#[test]
fn avg_decimal_with_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..6)
.map(|i| if i == 2 { None } else { Some(i) })
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(Some(32500), 14, 4)
)
}
#[test]
fn avg_decimal_all_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
std::iter::repeat::<Option<i128>>(None)
.take(6)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 0)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 0),
Avg,
ScalarValue::Decimal128(None, 14, 4)
)
}
#[test]
fn avg_i32() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::from(3_f64))
}
#[test]
fn avg_i32_with_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![
Some(1),
None,
Some(3),
Some(4),
Some(5),
]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::from(3.25f64))
}
#[test]
fn avg_i32_all_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
generic_test_op!(a, DataType::Int32, Avg, ScalarValue::Float64(None))
}
#[test]
fn avg_u32() -> Result<()> {
let a: ArrayRef =
Arc::new(UInt32Array::from(vec![1_u32, 2_u32, 3_u32, 4_u32, 5_u32]));
generic_test_op!(a, DataType::UInt32, Avg, ScalarValue::from(3.0f64))
}
#[test]
fn avg_f32() -> Result<()> {
let a: ArrayRef =
Arc::new(Float32Array::from(vec![1_f32, 2_f32, 3_f32, 4_f32, 5_f32]));
generic_test_op!(a, DataType::Float32, Avg, ScalarValue::from(3_f64))
}
#[test]
fn avg_f64() -> Result<()> {
let a: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64, 4_f64, 5_f64]));
generic_test_op!(a, DataType::Float64, Avg, ScalarValue::from(3_f64))
}
}