use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use datafusion_common::ScalarValue;
use datafusion_common::{internal_err, DataFusionError, Result};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;
#[derive(Debug)]
pub struct ArrayAgg {
name: String,
input_data_type: DataType,
expr: Arc<dyn PhysicalExpr>,
}
impl ArrayAgg {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
) -> Self {
Self {
name: name.into(),
expr,
input_data_type: data_type,
}
}
}
impl AggregateExpr for ArrayAgg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new_list(
&self.name,
Field::new("item", self.input_data_type.clone(), true),
false,
))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(ArrayAggAccumulator::try_new(
&self.input_data_type,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new_list(
format_state_name(&self.name, "array_agg"),
Field::new("item", self.input_data_type.clone(), true),
false,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
}
impl PartialEq<dyn Any> for ArrayAgg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.input_data_type == x.input_data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
#[derive(Debug)]
pub(crate) struct ArrayAggAccumulator {
values: Vec<ScalarValue>,
datatype: DataType,
}
impl ArrayAggAccumulator {
pub fn try_new(datatype: &DataType) -> Result<Self> {
Ok(Self {
values: vec![],
datatype: datatype.clone(),
})
}
}
impl Accumulator for ArrayAggAccumulator {
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
assert!(values.len() == 1, "array_agg can only take 1 param!");
let arr = &values[0];
(0..arr.len()).try_for_each(|index| {
let scalar = ScalarValue::try_from_array(arr, index)?;
self.values.push(scalar);
Ok(())
})
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
assert!(states.len() == 1, "array_agg states must be singleton!");
let arr = &states[0];
(0..arr.len()).try_for_each(|index| {
let scalar = ScalarValue::try_from_array(arr, index)?;
if let ScalarValue::List(Some(values), _) = scalar {
self.values.extend(values);
Ok(())
} else {
internal_err!("array_agg state must be list!")
}
})
}
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![self.evaluate()?])
}
fn evaluate(&self) -> Result<ScalarValue> {
Ok(ScalarValue::new_list(
Some(self.values.clone()),
self.datatype.clone(),
))
}
fn size(&self) -> usize {
std::mem::size_of_val(self) + ScalarValue::size_of_vec(&self.values)
- std::mem::size_of_val(&self.values)
+ self.datatype.size()
- std::mem::size_of_val(&self.datatype)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use crate::generic_test_op;
use arrow::array::ArrayRef;
use arrow::array::Int32Array;
use arrow::datatypes::*;
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
#[test]
fn array_agg_i32() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));
let list = ScalarValue::new_list(
Some(vec![
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(Some(3)),
ScalarValue::Int32(Some(4)),
ScalarValue::Int32(Some(5)),
]),
DataType::Int32,
);
generic_test_op!(a, DataType::Int32, ArrayAgg, list, DataType::Int32)
}
#[test]
fn array_agg_nested() -> Result<()> {
let l1 = ScalarValue::new_list(
Some(vec![
ScalarValue::new_list(
Some(vec![
ScalarValue::from(1i32),
ScalarValue::from(2i32),
ScalarValue::from(3i32),
]),
DataType::Int32,
),
ScalarValue::new_list(
Some(vec![ScalarValue::from(4i32), ScalarValue::from(5i32)]),
DataType::Int32,
),
]),
DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
);
let l2 = ScalarValue::new_list(
Some(vec![
ScalarValue::new_list(
Some(vec![ScalarValue::from(6i32)]),
DataType::Int32,
),
ScalarValue::new_list(
Some(vec![ScalarValue::from(7i32), ScalarValue::from(8i32)]),
DataType::Int32,
),
]),
DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
);
let l3 = ScalarValue::new_list(
Some(vec![ScalarValue::new_list(
Some(vec![ScalarValue::from(9i32)]),
DataType::Int32,
)]),
DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
);
let list = ScalarValue::new_list(
Some(vec![l1.clone(), l2.clone(), l3.clone()]),
DataType::List(Arc::new(Field::new("item", DataType::Int32, true))),
);
let array = ScalarValue::iter_to_array(vec![l1, l2, l3]).unwrap();
generic_test_op!(
array,
DataType::List(Arc::new(Field::new_list(
"item",
Field::new("item", DataType::Int32, true),
true,
))),
ArrayAgg,
list,
DataType::List(Arc::new(Field::new("item", DataType::Int32, true,)))
)
}
}