1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Interval and selectivity in [`AnalysisContext`]

use crate::expressions::Column;
use crate::intervals::cp_solver::PropagationResult;
use crate::intervals::{cardinality_ratio, ExprIntervalGraph, Interval, IntervalBound};
use crate::utils::collect_columns;
use crate::PhysicalExpr;

use arrow::datatypes::Schema;
use datafusion_common::{
    internal_err, ColumnStatistics, DataFusionError, Result, ScalarValue,
};

use std::fmt::Debug;
use std::sync::Arc;

/// The shared context used during the analysis of an expression. Includes
/// the boundaries for all known columns.
#[derive(Clone, Debug, PartialEq)]
pub struct AnalysisContext {
    // A list of known column boundaries, ordered by the index
    // of the column in the current schema.
    pub boundaries: Option<Vec<ExprBoundaries>>,
    /// The estimated percentage of rows that this expression would select, if
    /// it were to be used as a boolean predicate on a filter. The value will be
    /// between 0.0 (selects nothing) and 1.0 (selects everything).
    pub selectivity: Option<f64>,
}

impl AnalysisContext {
    pub fn new(boundaries: Vec<ExprBoundaries>) -> Self {
        Self {
            boundaries: Some(boundaries),
            selectivity: None,
        }
    }

    pub fn with_selectivity(mut self, selectivity: f64) -> Self {
        self.selectivity = Some(selectivity);
        self
    }

    /// Create a new analysis context from column statistics.
    pub fn from_statistics(
        input_schema: &Schema,
        statistics: &[ColumnStatistics],
    ) -> Self {
        let mut column_boundaries = vec![];
        for (idx, stats) in statistics.iter().enumerate() {
            column_boundaries.push(ExprBoundaries::from_column(
                stats,
                input_schema.fields()[idx].name().clone(),
                idx,
            ));
        }
        Self::new(column_boundaries)
    }
}

/// Represents the boundaries of the resulting value from a physical expression,
/// if it were to be an expression, if it were to be evaluated.
#[derive(Clone, Debug, PartialEq)]
pub struct ExprBoundaries {
    pub column: Column,
    /// Minimum and maximum values this expression can have.
    pub interval: Interval,
    /// Maximum number of distinct values this expression can produce, if known.
    pub distinct_count: Option<usize>,
}

impl ExprBoundaries {
    /// Create a new `ExprBoundaries` object from column level statistics.
    pub fn from_column(stats: &ColumnStatistics, col: String, index: usize) -> Self {
        Self {
            column: Column::new(&col, index),
            interval: Interval::new(
                IntervalBound::new(
                    stats.min_value.clone().unwrap_or(ScalarValue::Null),
                    false,
                ),
                IntervalBound::new(
                    stats.max_value.clone().unwrap_or(ScalarValue::Null),
                    false,
                ),
            ),
            distinct_count: stats.distinct_count,
        }
    }
}

/// Attempts to refine column boundaries and compute a selectivity value.
///
/// The function accepts boundaries of the input columns in the `context` parameter.
/// It then tries to tighten these boundaries based on the provided `expr`.
/// The resulting selectivity value is calculated by comparing the initial and final boundaries.
/// The computation assumes that the data within the column is uniformly distributed and not sorted.
///
/// # Arguments
///
/// * `context` - The context holding input column boundaries.
/// * `expr` - The expression used to shrink the column boundaries.
///
/// # Returns
///
/// * `AnalysisContext` constructed by pruned boundaries and a selectivity value.
pub fn analyze(
    expr: &Arc<dyn PhysicalExpr>,
    context: AnalysisContext,
) -> Result<AnalysisContext> {
    let target_boundaries = context.boundaries.ok_or_else(|| {
        DataFusionError::Internal("No column exists at the input to filter".to_string())
    })?;

    let mut graph = ExprIntervalGraph::try_new(expr.clone())?;

    let columns: Vec<Arc<dyn PhysicalExpr>> = collect_columns(expr)
        .into_iter()
        .map(|c| Arc::new(c) as Arc<dyn PhysicalExpr>)
        .collect();

    let target_expr_and_indices: Vec<(Arc<dyn PhysicalExpr>, usize)> =
        graph.gather_node_indices(columns.as_slice());

    let mut target_indices_and_boundaries: Vec<(usize, Interval)> =
        target_expr_and_indices
            .iter()
            .filter_map(|(expr, i)| {
                target_boundaries.iter().find_map(|bound| {
                    expr.as_any()
                        .downcast_ref::<Column>()
                        .filter(|expr_column| bound.column.eq(*expr_column))
                        .map(|_| (*i, bound.interval.clone()))
                })
            })
            .collect();

    match graph.update_ranges(&mut target_indices_and_boundaries)? {
        PropagationResult::Success => {
            shrink_boundaries(expr, graph, target_boundaries, target_expr_and_indices)
        }
        PropagationResult::Infeasible => {
            Ok(AnalysisContext::new(target_boundaries).with_selectivity(0.0))
        }
        PropagationResult::CannotPropagate => {
            Ok(AnalysisContext::new(target_boundaries).with_selectivity(1.0))
        }
    }
}

/// If the `PropagationResult` indicates success, this function calculates the
/// selectivity value by comparing the initial and final column boundaries.
/// Following this, it constructs and returns a new `AnalysisContext` with the
/// updated parameters.
fn shrink_boundaries(
    expr: &Arc<dyn PhysicalExpr>,
    mut graph: ExprIntervalGraph,
    mut target_boundaries: Vec<ExprBoundaries>,
    target_expr_and_indices: Vec<(Arc<dyn PhysicalExpr>, usize)>,
) -> Result<AnalysisContext> {
    let initial_boundaries = target_boundaries.clone();
    target_expr_and_indices.iter().for_each(|(expr, i)| {
        if let Some(column) = expr.as_any().downcast_ref::<Column>() {
            if let Some(bound) = target_boundaries
                .iter_mut()
                .find(|bound| bound.column.eq(column))
            {
                bound.interval = graph.get_interval(*i);
            };
        }
    });
    let graph_nodes = graph.gather_node_indices(&[expr.clone()]);
    let (_, root_index) = graph_nodes.first().ok_or_else(|| {
        DataFusionError::Internal("Error in constructing predicate graph".to_string())
    })?;
    let final_result = graph.get_interval(*root_index);

    let selectivity = calculate_selectivity(
        &final_result.lower.value,
        &final_result.upper.value,
        &target_boundaries,
        &initial_boundaries,
    )?;

    if !(0.0..=1.0).contains(&selectivity) {
        return internal_err!("Selectivity is out of limit: {}", selectivity);
    }

    Ok(AnalysisContext::new(target_boundaries).with_selectivity(selectivity))
}

/// This function calculates the filter predicate's selectivity by comparing
/// the initial and pruned column boundaries. Selectivity is defined as the
/// ratio of rows in a table that satisfy the filter's predicate.
///
/// An exact propagation result at the root, i.e. `[true, true]` or `[false, false]`,
/// leads to early exit (returning a selectivity value of either 1.0 or 0.0). In such
/// a case, `[true, true]` indicates that all data values satisfy the predicate (hence,
/// selectivity is 1.0), and `[false, false]` suggests that no data value meets the
/// predicate (therefore, selectivity is 0.0).
fn calculate_selectivity(
    lower_value: &ScalarValue,
    upper_value: &ScalarValue,
    target_boundaries: &[ExprBoundaries],
    initial_boundaries: &[ExprBoundaries],
) -> Result<f64> {
    match (lower_value, upper_value) {
        (ScalarValue::Boolean(Some(true)), ScalarValue::Boolean(Some(true))) => Ok(1.0),
        (ScalarValue::Boolean(Some(false)), ScalarValue::Boolean(Some(false))) => Ok(0.0),
        _ => {
            // Since the intervals are assumed uniform and the values
            // are not correlated, we need to multiply the selectivities
            // of multiple columns to get the overall selectivity.
            target_boundaries.iter().enumerate().try_fold(
                1.0,
                |acc, (i, ExprBoundaries { interval, .. })| {
                    let temp =
                        cardinality_ratio(&initial_boundaries[i].interval, interval)?;
                    Ok(acc * temp)
                },
            )
        }
    }
}