1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::expressions::GetFieldAccessExpr;
use crate::var_provider::is_system_variables;
use crate::{
execution_props::ExecutionProps,
expressions::{self, binary, like, Column, GetIndexedFieldExpr, Literal},
functions, udf,
var_provider::VarType,
PhysicalExpr,
};
use arrow::datatypes::Schema;
use datafusion_common::{
exec_err, internal_err, not_impl_err, plan_err, DFSchema, DataFusionError, Result,
ScalarValue,
};
use datafusion_expr::expr::{Alias, Cast, InList, ScalarFunction, ScalarUDF};
use datafusion_expr::{
binary_expr, Between, BinaryExpr, Expr, GetFieldAccess, GetIndexedField, Like,
Operator, TryCast,
};
use std::sync::Arc;
/// Create a physical expression from a logical expression ([Expr]).
///
/// # Arguments
///
/// * `e` - The logical expression
/// * `input_dfschema` - The DataFusion schema for the input, used to resolve `Column` references
/// to qualified or unqualified fields by name.
/// * `input_schema` - The Arrow schema for the input, used for determining expression data types
/// when performing type coercion.
pub fn create_physical_expr(
e: &Expr,
input_dfschema: &DFSchema,
input_schema: &Schema,
execution_props: &ExecutionProps,
) -> Result<Arc<dyn PhysicalExpr>> {
if input_schema.fields.len() != input_dfschema.fields().len() {
return internal_err!(
"create_physical_expr expected same number of fields, got \
Arrow schema with {} and DataFusion schema with {}",
input_schema.fields.len(),
input_dfschema.fields().len()
);
}
match e {
Expr::Alias(Alias { expr, .. }) => Ok(create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?),
Expr::Column(c) => {
let idx = input_dfschema.index_of_column(c)?;
Ok(Arc::new(Column::new(&c.name, idx)))
}
Expr::Literal(value) => Ok(Arc::new(Literal::new(value.clone()))),
Expr::ScalarVariable(_, variable_names) => {
if is_system_variables(variable_names) {
match execution_props.get_var_provider(VarType::System) {
Some(provider) => {
let scalar_value = provider.get_value(variable_names.clone())?;
Ok(Arc::new(Literal::new(scalar_value)))
}
_ => plan_err!("No system variable provider found"),
}
} else {
match execution_props.get_var_provider(VarType::UserDefined) {
Some(provider) => {
let scalar_value = provider.get_value(variable_names.clone())?;
Ok(Arc::new(Literal::new(scalar_value)))
}
_ => plan_err!("No user defined variable provider found"),
}
}
}
Expr::IsTrue(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
Expr::Literal(ScalarValue::Boolean(Some(true))),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::IsNotTrue(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsDistinctFrom,
Expr::Literal(ScalarValue::Boolean(Some(true))),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::IsFalse(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
Expr::Literal(ScalarValue::Boolean(Some(false))),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::IsNotFalse(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsDistinctFrom,
Expr::Literal(ScalarValue::Boolean(Some(false))),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::IsUnknown(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsNotDistinctFrom,
Expr::Literal(ScalarValue::Boolean(None)),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::IsNotUnknown(expr) => {
let binary_op = binary_expr(
expr.as_ref().clone(),
Operator::IsDistinctFrom,
Expr::Literal(ScalarValue::Boolean(None)),
);
create_physical_expr(
&binary_op,
input_dfschema,
input_schema,
execution_props,
)
}
Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
// Create physical expressions for left and right operands
let lhs = create_physical_expr(
left,
input_dfschema,
input_schema,
execution_props,
)?;
let rhs = create_physical_expr(
right,
input_dfschema,
input_schema,
execution_props,
)?;
// Note that the logical planner is responsible
// for type coercion on the arguments (e.g. if one
// argument was originally Int32 and one was
// Int64 they will both be coerced to Int64).
//
// There should be no coercion during physical
// planning.
binary(lhs, *op, rhs, input_schema)
}
Expr::Like(Like {
negated,
expr,
pattern,
escape_char,
case_insensitive,
}) => {
if escape_char.is_some() {
return exec_err!("LIKE does not support escape_char");
}
let physical_expr = create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?;
let physical_pattern = create_physical_expr(
pattern,
input_dfschema,
input_schema,
execution_props,
)?;
like(
*negated,
*case_insensitive,
physical_expr,
physical_pattern,
input_schema,
)
}
Expr::Case(case) => {
let expr: Option<Arc<dyn PhysicalExpr>> = if let Some(e) = &case.expr {
Some(create_physical_expr(
e.as_ref(),
input_dfschema,
input_schema,
execution_props,
)?)
} else {
None
};
let when_expr = case
.when_then_expr
.iter()
.map(|(w, _)| {
create_physical_expr(
w.as_ref(),
input_dfschema,
input_schema,
execution_props,
)
})
.collect::<Result<Vec<_>>>()?;
let then_expr = case
.when_then_expr
.iter()
.map(|(_, t)| {
create_physical_expr(
t.as_ref(),
input_dfschema,
input_schema,
execution_props,
)
})
.collect::<Result<Vec<_>>>()?;
let when_then_expr: Vec<(Arc<dyn PhysicalExpr>, Arc<dyn PhysicalExpr>)> =
when_expr
.iter()
.zip(then_expr.iter())
.map(|(w, t)| (w.clone(), t.clone()))
.collect();
let else_expr: Option<Arc<dyn PhysicalExpr>> =
if let Some(e) = &case.else_expr {
Some(create_physical_expr(
e.as_ref(),
input_dfschema,
input_schema,
execution_props,
)?)
} else {
None
};
Ok(expressions::case(expr, when_then_expr, else_expr)?)
}
Expr::Cast(Cast { expr, data_type }) => expressions::cast(
create_physical_expr(expr, input_dfschema, input_schema, execution_props)?,
input_schema,
data_type.clone(),
),
Expr::TryCast(TryCast { expr, data_type }) => expressions::try_cast(
create_physical_expr(expr, input_dfschema, input_schema, execution_props)?,
input_schema,
data_type.clone(),
),
Expr::Not(expr) => expressions::not(create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?),
Expr::Negative(expr) => expressions::negative(
create_physical_expr(expr, input_dfschema, input_schema, execution_props)?,
input_schema,
),
Expr::IsNull(expr) => expressions::is_null(create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?),
Expr::IsNotNull(expr) => expressions::is_not_null(create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?),
Expr::GetIndexedField(GetIndexedField { expr, field }) => {
let field = match field {
GetFieldAccess::NamedStructField { name } => {
GetFieldAccessExpr::NamedStructField { name: name.clone() }
}
GetFieldAccess::ListIndex { key } => GetFieldAccessExpr::ListIndex {
key: create_physical_expr(
key,
input_dfschema,
input_schema,
execution_props,
)?,
},
GetFieldAccess::ListRange { start, stop } => {
GetFieldAccessExpr::ListRange {
start: create_physical_expr(
start,
input_dfschema,
input_schema,
execution_props,
)?,
stop: create_physical_expr(
stop,
input_dfschema,
input_schema,
execution_props,
)?,
}
}
};
Ok(Arc::new(GetIndexedFieldExpr::new(
create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?,
field,
)))
}
Expr::ScalarFunction(ScalarFunction { fun, args }) => {
let physical_args = args
.iter()
.map(|e| {
create_physical_expr(e, input_dfschema, input_schema, execution_props)
})
.collect::<Result<Vec<_>>>()?;
functions::create_physical_expr(
fun,
&physical_args,
input_schema,
execution_props,
)
}
Expr::ScalarUDF(ScalarUDF { fun, args }) => {
let mut physical_args = vec![];
for e in args {
physical_args.push(create_physical_expr(
e,
input_dfschema,
input_schema,
execution_props,
)?);
}
// udfs with zero params expect null array as input
if args.is_empty() {
physical_args.push(Arc::new(Literal::new(ScalarValue::Null)));
}
udf::create_physical_expr(fun.clone().as_ref(), &physical_args, input_schema)
}
Expr::Between(Between {
expr,
negated,
low,
high,
}) => {
let value_expr = create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?;
let low_expr =
create_physical_expr(low, input_dfschema, input_schema, execution_props)?;
let high_expr = create_physical_expr(
high,
input_dfschema,
input_schema,
execution_props,
)?;
// rewrite the between into the two binary operators
let binary_expr = binary(
binary(value_expr.clone(), Operator::GtEq, low_expr, input_schema)?,
Operator::And,
binary(value_expr.clone(), Operator::LtEq, high_expr, input_schema)?,
input_schema,
);
if *negated {
expressions::not(binary_expr?)
} else {
binary_expr
}
}
Expr::InList(InList {
expr,
list,
negated,
}) => match expr.as_ref() {
Expr::Literal(ScalarValue::Utf8(None)) => {
Ok(expressions::lit(ScalarValue::Boolean(None)))
}
_ => {
let value_expr = create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)?;
let list_exprs = list
.iter()
.map(|expr| {
create_physical_expr(
expr,
input_dfschema,
input_schema,
execution_props,
)
})
.collect::<Result<Vec<_>>>()?;
expressions::in_list(value_expr, list_exprs, negated, input_schema)
}
},
other => {
not_impl_err!("Physical plan does not support logical expression {other:?}")
}
}
}