1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{ops::Neg, sync::Arc};

use crate::expressions::Column;
use crate::utils::get_indices_of_matching_sort_exprs_with_order_eq;
use crate::{
    EquivalenceProperties, OrderingEquivalenceProperties, PhysicalExpr, PhysicalSortExpr,
};

use arrow_schema::SortOptions;
use datafusion_common::tree_node::{Transformed, TreeNode, VisitRecursion};
use datafusion_common::Result;

use itertools::Itertools;

/// To propagate [`SortOptions`] across the [`PhysicalExpr`], it is insufficient
/// to simply use `Option<SortOptions>`: There must be a differentiation between
/// unordered columns and literal values, since literals may not break the ordering
/// when they are used as a child of some binary expression when the other child has
/// some ordering. On the other hand, unordered columns cannot maintain ordering when
/// they take part in such operations.
///
/// Example: ((a_ordered + b_unordered) + c_ordered) expression cannot end up with
/// sorted data; however the ((a_ordered + 999) + c_ordered) expression can. Therefore,
/// we need two different variants for literals and unordered columns as literals are
/// often more ordering-friendly under most mathematical operations.
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum SortProperties {
    /// Use the ordinary [`SortOptions`] struct to represent ordered data:
    Ordered(SortOptions),
    // This alternative represents unordered data:
    Unordered,
    // Singleton is used for single-valued literal numbers:
    Singleton,
}

impl SortProperties {
    pub fn add(&self, rhs: &Self) -> Self {
        match (self, rhs) {
            (Self::Singleton, _) => *rhs,
            (_, Self::Singleton) => *self,
            (Self::Ordered(lhs), Self::Ordered(rhs))
                if lhs.descending == rhs.descending =>
            {
                Self::Ordered(SortOptions {
                    descending: lhs.descending,
                    nulls_first: lhs.nulls_first || rhs.nulls_first,
                })
            }
            _ => Self::Unordered,
        }
    }

    pub fn sub(&self, rhs: &Self) -> Self {
        match (self, rhs) {
            (Self::Singleton, Self::Singleton) => Self::Singleton,
            (Self::Singleton, Self::Ordered(rhs)) => Self::Ordered(SortOptions {
                descending: !rhs.descending,
                nulls_first: rhs.nulls_first,
            }),
            (_, Self::Singleton) => *self,
            (Self::Ordered(lhs), Self::Ordered(rhs))
                if lhs.descending != rhs.descending =>
            {
                Self::Ordered(SortOptions {
                    descending: lhs.descending,
                    nulls_first: lhs.nulls_first || rhs.nulls_first,
                })
            }
            _ => Self::Unordered,
        }
    }

    pub fn gt_or_gteq(&self, rhs: &Self) -> Self {
        match (self, rhs) {
            (Self::Singleton, Self::Ordered(rhs)) => Self::Ordered(SortOptions {
                descending: !rhs.descending,
                nulls_first: rhs.nulls_first,
            }),
            (_, Self::Singleton) => *self,
            (Self::Ordered(lhs), Self::Ordered(rhs))
                if lhs.descending != rhs.descending =>
            {
                *self
            }
            _ => Self::Unordered,
        }
    }

    pub fn and(&self, rhs: &Self) -> Self {
        match (self, rhs) {
            (Self::Ordered(lhs), Self::Ordered(rhs))
                if lhs.descending == rhs.descending =>
            {
                Self::Ordered(SortOptions {
                    descending: lhs.descending,
                    nulls_first: lhs.nulls_first || rhs.nulls_first,
                })
            }
            (Self::Ordered(opt), Self::Singleton)
            | (Self::Singleton, Self::Ordered(opt)) => Self::Ordered(SortOptions {
                descending: opt.descending,
                nulls_first: opt.nulls_first,
            }),
            (Self::Singleton, Self::Singleton) => Self::Singleton,
            _ => Self::Unordered,
        }
    }
}

impl Neg for SortProperties {
    type Output = Self;

    fn neg(self) -> Self::Output {
        match self {
            SortProperties::Ordered(SortOptions {
                descending,
                nulls_first,
            }) => SortProperties::Ordered(SortOptions {
                descending: !descending,
                nulls_first,
            }),
            SortProperties::Singleton => SortProperties::Singleton,
            SortProperties::Unordered => SortProperties::Unordered,
        }
    }
}

/// The `ExprOrdering` struct is designed to aid in the determination of ordering (represented
/// by [`SortProperties`]) for a given [`PhysicalExpr`]. When analyzing the orderings
/// of a [`PhysicalExpr`], the process begins by assigning the ordering of its leaf nodes.
/// By propagating these leaf node orderings upwards in the expression tree, the overall
/// ordering of the entire [`PhysicalExpr`] can be derived.
///
/// This struct holds the necessary state information for each expression in the [`PhysicalExpr`].
/// It encapsulates the orderings (`state`) associated with the expression (`expr`), and
/// orderings of the children expressions (`children_states`). The [`ExprOrdering`] of a parent
/// expression is determined based on the [`ExprOrdering`] states of its children expressions.
#[derive(Debug)]
pub struct ExprOrdering {
    pub expr: Arc<dyn PhysicalExpr>,
    pub state: Option<SortProperties>,
    pub children_states: Option<Vec<SortProperties>>,
}

impl ExprOrdering {
    pub fn new(expr: Arc<dyn PhysicalExpr>) -> Self {
        Self {
            expr,
            state: None,
            children_states: None,
        }
    }

    pub fn children(&self) -> Vec<ExprOrdering> {
        self.expr
            .children()
            .into_iter()
            .map(|e| ExprOrdering::new(e))
            .collect()
    }

    pub fn new_with_children(
        children_states: Vec<SortProperties>,
        parent_expr: Arc<dyn PhysicalExpr>,
    ) -> Self {
        Self {
            expr: parent_expr,
            state: None,
            children_states: Some(children_states),
        }
    }
}

impl TreeNode for ExprOrdering {
    fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
    where
        F: FnMut(&Self) -> Result<VisitRecursion>,
    {
        for child in self.children() {
            match op(&child)? {
                VisitRecursion::Continue => {}
                VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
                VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
            }
        }
        Ok(VisitRecursion::Continue)
    }

    fn map_children<F>(self, transform: F) -> Result<Self>
    where
        F: FnMut(Self) -> Result<Self>,
    {
        let children = self.children();
        if children.is_empty() {
            Ok(self)
        } else {
            Ok(ExprOrdering::new_with_children(
                children
                    .into_iter()
                    .map(transform)
                    .map_ok(|c| c.state.unwrap_or(SortProperties::Unordered))
                    .collect::<Result<Vec<_>>>()?,
                self.expr,
            ))
        }
    }
}

/// Calculates the [`SortProperties`] of a given [`ExprOrdering`] node.
/// The node is either a leaf node, or an intermediate node:
/// - If it is a leaf node, the children states are `None`. We directly find
/// the order of the node by looking at the given sort expression and equivalence
/// properties if it is a `Column` leaf, or we mark it as unordered. In the case
/// of a `Literal` leaf, we mark it as singleton so that it can cooperate with
/// some ordered columns at the upper steps.
/// - If it is an intermediate node, the children states matter. Each `PhysicalExpr`
/// and operator has its own rules about how to propagate the children orderings.
/// However, before the children order propagation, it is checked that whether
/// the intermediate node can be directly matched with the sort expression. If there
/// is a match, the sort expression emerges at that node immediately, discarding
/// the order coming from the children.
pub fn update_ordering(
    mut node: ExprOrdering,
    sort_expr: &PhysicalSortExpr,
    equal_properties: &EquivalenceProperties,
    ordering_equal_properties: &OrderingEquivalenceProperties,
) -> Result<Transformed<ExprOrdering>> {
    // If we can directly match a sort expr with the current node, we can set
    // its state and return early.
    // TODO: If there is a PhysicalExpr other than a Column at this node (e.g.
    //       a BinaryExpr like a + b), and there is an ordering equivalence of
    //       it (let's say like c + d), we actually can find it at this step.
    if sort_expr.expr.eq(&node.expr) {
        node.state = Some(SortProperties::Ordered(sort_expr.options));
        return Ok(Transformed::Yes(node));
    }

    if let Some(children_sort_options) = &node.children_states {
        // We have an intermediate (non-leaf) node, account for its children:
        node.state = Some(node.expr.get_ordering(children_sort_options));
    } else if let Some(column) = node.expr.as_any().downcast_ref::<Column>() {
        // We have a Column, which is one of the two possible leaf node types:
        node.state = get_indices_of_matching_sort_exprs_with_order_eq(
            &[sort_expr.clone()],
            &[column.clone()],
            equal_properties,
            ordering_equal_properties,
        )
        .map(|(sort_options, _)| {
            SortProperties::Ordered(SortOptions {
                descending: sort_options[0].descending,
                nulls_first: sort_options[0].nulls_first,
            })
        });
    } else {
        // We have a Literal, which is the other possible leaf node type:
        node.state = Some(node.expr.get_ordering(&[]));
    }
    Ok(Transformed::Yes(node))
}