1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::{ops::Neg, sync::Arc};
use crate::expressions::Column;
use crate::utils::get_indices_of_matching_sort_exprs_with_order_eq;
use crate::{
EquivalenceProperties, OrderingEquivalenceProperties, PhysicalExpr, PhysicalSortExpr,
};
use arrow_schema::SortOptions;
use datafusion_common::tree_node::{Transformed, TreeNode, VisitRecursion};
use datafusion_common::Result;
use itertools::Itertools;
/// To propagate [`SortOptions`] across the [`PhysicalExpr`], it is insufficient
/// to simply use `Option<SortOptions>`: There must be a differentiation between
/// unordered columns and literal values, since literals may not break the ordering
/// when they are used as a child of some binary expression when the other child has
/// some ordering. On the other hand, unordered columns cannot maintain ordering when
/// they take part in such operations.
///
/// Example: ((a_ordered + b_unordered) + c_ordered) expression cannot end up with
/// sorted data; however the ((a_ordered + 999) + c_ordered) expression can. Therefore,
/// we need two different variants for literals and unordered columns as literals are
/// often more ordering-friendly under most mathematical operations.
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum SortProperties {
/// Use the ordinary [`SortOptions`] struct to represent ordered data:
Ordered(SortOptions),
// This alternative represents unordered data:
Unordered,
// Singleton is used for single-valued literal numbers:
Singleton,
}
impl SortProperties {
pub fn add(&self, rhs: &Self) -> Self {
match (self, rhs) {
(Self::Singleton, _) => *rhs,
(_, Self::Singleton) => *self,
(Self::Ordered(lhs), Self::Ordered(rhs))
if lhs.descending == rhs.descending =>
{
Self::Ordered(SortOptions {
descending: lhs.descending,
nulls_first: lhs.nulls_first || rhs.nulls_first,
})
}
_ => Self::Unordered,
}
}
pub fn sub(&self, rhs: &Self) -> Self {
match (self, rhs) {
(Self::Singleton, Self::Singleton) => Self::Singleton,
(Self::Singleton, Self::Ordered(rhs)) => Self::Ordered(SortOptions {
descending: !rhs.descending,
nulls_first: rhs.nulls_first,
}),
(_, Self::Singleton) => *self,
(Self::Ordered(lhs), Self::Ordered(rhs))
if lhs.descending != rhs.descending =>
{
Self::Ordered(SortOptions {
descending: lhs.descending,
nulls_first: lhs.nulls_first || rhs.nulls_first,
})
}
_ => Self::Unordered,
}
}
pub fn gt_or_gteq(&self, rhs: &Self) -> Self {
match (self, rhs) {
(Self::Singleton, Self::Ordered(rhs)) => Self::Ordered(SortOptions {
descending: !rhs.descending,
nulls_first: rhs.nulls_first,
}),
(_, Self::Singleton) => *self,
(Self::Ordered(lhs), Self::Ordered(rhs))
if lhs.descending != rhs.descending =>
{
*self
}
_ => Self::Unordered,
}
}
pub fn and(&self, rhs: &Self) -> Self {
match (self, rhs) {
(Self::Ordered(lhs), Self::Ordered(rhs))
if lhs.descending == rhs.descending =>
{
Self::Ordered(SortOptions {
descending: lhs.descending,
nulls_first: lhs.nulls_first || rhs.nulls_first,
})
}
(Self::Ordered(opt), Self::Singleton)
| (Self::Singleton, Self::Ordered(opt)) => Self::Ordered(SortOptions {
descending: opt.descending,
nulls_first: opt.nulls_first,
}),
(Self::Singleton, Self::Singleton) => Self::Singleton,
_ => Self::Unordered,
}
}
}
impl Neg for SortProperties {
type Output = Self;
fn neg(self) -> Self::Output {
match self {
SortProperties::Ordered(SortOptions {
descending,
nulls_first,
}) => SortProperties::Ordered(SortOptions {
descending: !descending,
nulls_first,
}),
SortProperties::Singleton => SortProperties::Singleton,
SortProperties::Unordered => SortProperties::Unordered,
}
}
}
/// The `ExprOrdering` struct is designed to aid in the determination of ordering (represented
/// by [`SortProperties`]) for a given [`PhysicalExpr`]. When analyzing the orderings
/// of a [`PhysicalExpr`], the process begins by assigning the ordering of its leaf nodes.
/// By propagating these leaf node orderings upwards in the expression tree, the overall
/// ordering of the entire [`PhysicalExpr`] can be derived.
///
/// This struct holds the necessary state information for each expression in the [`PhysicalExpr`].
/// It encapsulates the orderings (`state`) associated with the expression (`expr`), and
/// orderings of the children expressions (`children_states`). The [`ExprOrdering`] of a parent
/// expression is determined based on the [`ExprOrdering`] states of its children expressions.
#[derive(Debug)]
pub struct ExprOrdering {
pub expr: Arc<dyn PhysicalExpr>,
pub state: Option<SortProperties>,
pub children_states: Option<Vec<SortProperties>>,
}
impl ExprOrdering {
pub fn new(expr: Arc<dyn PhysicalExpr>) -> Self {
Self {
expr,
state: None,
children_states: None,
}
}
pub fn children(&self) -> Vec<ExprOrdering> {
self.expr
.children()
.into_iter()
.map(|e| ExprOrdering::new(e))
.collect()
}
pub fn new_with_children(
children_states: Vec<SortProperties>,
parent_expr: Arc<dyn PhysicalExpr>,
) -> Self {
Self {
expr: parent_expr,
state: None,
children_states: Some(children_states),
}
}
}
impl TreeNode for ExprOrdering {
fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
where
F: FnMut(&Self) -> Result<VisitRecursion>,
{
for child in self.children() {
match op(&child)? {
VisitRecursion::Continue => {}
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
}
}
Ok(VisitRecursion::Continue)
}
fn map_children<F>(self, transform: F) -> Result<Self>
where
F: FnMut(Self) -> Result<Self>,
{
let children = self.children();
if children.is_empty() {
Ok(self)
} else {
Ok(ExprOrdering::new_with_children(
children
.into_iter()
.map(transform)
.map_ok(|c| c.state.unwrap_or(SortProperties::Unordered))
.collect::<Result<Vec<_>>>()?,
self.expr,
))
}
}
}
/// Calculates the [`SortProperties`] of a given [`ExprOrdering`] node.
/// The node is either a leaf node, or an intermediate node:
/// - If it is a leaf node, the children states are `None`. We directly find
/// the order of the node by looking at the given sort expression and equivalence
/// properties if it is a `Column` leaf, or we mark it as unordered. In the case
/// of a `Literal` leaf, we mark it as singleton so that it can cooperate with
/// some ordered columns at the upper steps.
/// - If it is an intermediate node, the children states matter. Each `PhysicalExpr`
/// and operator has its own rules about how to propagate the children orderings.
/// However, before the children order propagation, it is checked that whether
/// the intermediate node can be directly matched with the sort expression. If there
/// is a match, the sort expression emerges at that node immediately, discarding
/// the order coming from the children.
pub fn update_ordering(
mut node: ExprOrdering,
sort_expr: &PhysicalSortExpr,
equal_properties: &EquivalenceProperties,
ordering_equal_properties: &OrderingEquivalenceProperties,
) -> Result<Transformed<ExprOrdering>> {
// If we can directly match a sort expr with the current node, we can set
// its state and return early.
// TODO: If there is a PhysicalExpr other than a Column at this node (e.g.
// a BinaryExpr like a + b), and there is an ordering equivalence of
// it (let's say like c + d), we actually can find it at this step.
if sort_expr.expr.eq(&node.expr) {
node.state = Some(SortProperties::Ordered(sort_expr.options));
return Ok(Transformed::Yes(node));
}
if let Some(children_sort_options) = &node.children_states {
// We have an intermediate (non-leaf) node, account for its children:
node.state = Some(node.expr.get_ordering(children_sort_options));
} else if let Some(column) = node.expr.as_any().downcast_ref::<Column>() {
// We have a Column, which is one of the two possible leaf node types:
node.state = get_indices_of_matching_sort_exprs_with_order_eq(
&[sort_expr.clone()],
&[column.clone()],
equal_properties,
ordering_equal_properties,
)
.map(|(sort_options, _)| {
SortProperties::Ordered(SortOptions {
descending: sort_options[0].descending,
nulls_first: sort_options[0].nulls_first,
})
});
} else {
// We have a Literal, which is the other possible leaf node type:
node.state = Some(node.expr.get_ordering(&[]));
}
Ok(Transformed::Yes(node))
}