1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::borrow::Borrow;
use std::collections::{HashMap, HashSet};
use std::ops::Range;
use std::sync::Arc;

use crate::equivalence::{
    EquivalenceProperties, EquivalentClass, OrderingEquivalenceProperties,
    OrderingEquivalentClass,
};
use crate::expressions::{BinaryExpr, Column, UnKnownColumn};
use crate::sort_properties::{ExprOrdering, SortProperties};
use crate::update_ordering;
use crate::{
    LexOrdering, LexOrderingRef, PhysicalExpr, PhysicalSortExpr, PhysicalSortRequirement,
};

use arrow::array::{make_array, Array, ArrayRef, BooleanArray, MutableArrayData};
use arrow::compute::{and_kleene, is_not_null, SlicesIterator};
use arrow::datatypes::SchemaRef;
use arrow_schema::SortOptions;
use datafusion_common::tree_node::{
    Transformed, TreeNode, TreeNodeRewriter, VisitRecursion,
};
use datafusion_common::utils::longest_consecutive_prefix;
use datafusion_common::Result;
use datafusion_expr::Operator;

use petgraph::graph::NodeIndex;
use petgraph::stable_graph::StableGraph;

/// Compare the two expr lists are equal no matter the order.
/// For example two InListExpr can be considered to be equals no matter the order:
///
/// In('a','b','c') == In('c','b','a')
pub fn expr_list_eq_any_order(
    list1: &[Arc<dyn PhysicalExpr>],
    list2: &[Arc<dyn PhysicalExpr>],
) -> bool {
    if list1.len() == list2.len() {
        let mut expr_vec1 = list1.to_vec();
        let mut expr_vec2 = list2.to_vec();
        while let Some(expr1) = expr_vec1.pop() {
            if let Some(idx) = expr_vec2.iter().position(|expr2| expr1.eq(expr2)) {
                expr_vec2.swap_remove(idx);
            } else {
                break;
            }
        }
        expr_vec1.is_empty() && expr_vec2.is_empty()
    } else {
        false
    }
}

/// Strictly compare the two expr lists are equal in the given order.
pub fn expr_list_eq_strict_order(
    list1: &[Arc<dyn PhysicalExpr>],
    list2: &[Arc<dyn PhysicalExpr>],
) -> bool {
    list1.len() == list2.len() && list1.iter().zip(list2.iter()).all(|(e1, e2)| e1.eq(e2))
}

/// Assume the predicate is in the form of CNF, split the predicate to a Vec of PhysicalExprs.
///
/// For example, split "a1 = a2 AND b1 <= b2 AND c1 != c2" into ["a1 = a2", "b1 <= b2", "c1 != c2"]
pub fn split_conjunction(
    predicate: &Arc<dyn PhysicalExpr>,
) -> Vec<&Arc<dyn PhysicalExpr>> {
    split_conjunction_impl(predicate, vec![])
}

fn split_conjunction_impl<'a>(
    predicate: &'a Arc<dyn PhysicalExpr>,
    mut exprs: Vec<&'a Arc<dyn PhysicalExpr>>,
) -> Vec<&'a Arc<dyn PhysicalExpr>> {
    match predicate.as_any().downcast_ref::<BinaryExpr>() {
        Some(binary) => match binary.op() {
            Operator::And => {
                let exprs = split_conjunction_impl(binary.left(), exprs);
                split_conjunction_impl(binary.right(), exprs)
            }
            _ => {
                exprs.push(predicate);
                exprs
            }
        },
        None => {
            exprs.push(predicate);
            exprs
        }
    }
}

/// Normalize the output expressions based on Columns Map.
///
/// If there is a mapping in Columns Map, replace the Column in the output expressions with the 1st Column in the Columns Map.
/// Otherwise, replace the Column with a place holder of [UnKnownColumn]
///
pub fn normalize_out_expr_with_columns_map(
    expr: Arc<dyn PhysicalExpr>,
    columns_map: &HashMap<Column, Vec<Column>>,
) -> Arc<dyn PhysicalExpr> {
    expr.clone()
        .transform(&|expr| {
            let normalized_form = match expr.as_any().downcast_ref::<Column>() {
                Some(column) => columns_map
                    .get(column)
                    .map(|c| Arc::new(c[0].clone()) as _)
                    .or_else(|| Some(Arc::new(UnKnownColumn::new(column.name())) as _)),
                None => None,
            };
            Ok(if let Some(normalized_form) = normalized_form {
                Transformed::Yes(normalized_form)
            } else {
                Transformed::No(expr)
            })
        })
        .unwrap_or(expr)
}

pub fn normalize_expr_with_equivalence_properties(
    expr: Arc<dyn PhysicalExpr>,
    eq_properties: &[EquivalentClass],
) -> Arc<dyn PhysicalExpr> {
    expr.clone()
        .transform(&|expr| {
            let normalized_form =
                expr.as_any().downcast_ref::<Column>().and_then(|column| {
                    for class in eq_properties {
                        if class.contains(column) {
                            return Some(Arc::new(class.head().clone()) as _);
                        }
                    }
                    None
                });
            Ok(if let Some(normalized_form) = normalized_form {
                Transformed::Yes(normalized_form)
            } else {
                Transformed::No(expr)
            })
        })
        .unwrap_or(expr)
}

/// This function normalizes `sort_expr` according to `eq_properties`. If the
/// given sort expression doesn't belong to equivalence set `eq_properties`,
/// it returns `sort_expr` as is.
fn normalize_sort_expr_with_equivalence_properties(
    mut sort_expr: PhysicalSortExpr,
    eq_properties: &[EquivalentClass],
) -> PhysicalSortExpr {
    sort_expr.expr =
        normalize_expr_with_equivalence_properties(sort_expr.expr, eq_properties);
    sort_expr
}

/// This function applies the [`normalize_sort_expr_with_equivalence_properties`]
/// function for all sort expressions in `sort_exprs` and returns a vector of
/// normalized sort expressions.
pub fn normalize_sort_exprs_with_equivalence_properties(
    sort_exprs: LexOrderingRef,
    eq_properties: &EquivalenceProperties,
) -> LexOrdering {
    sort_exprs
        .iter()
        .map(|expr| {
            normalize_sort_expr_with_equivalence_properties(
                expr.clone(),
                eq_properties.classes(),
            )
        })
        .collect()
}

/// This function normalizes `sort_requirement` according to `eq_properties`.
/// If the given sort requirement doesn't belong to equivalence set
/// `eq_properties`, it returns `sort_requirement` as is.
fn normalize_sort_requirement_with_equivalence_properties(
    mut sort_requirement: PhysicalSortRequirement,
    eq_properties: &[EquivalentClass],
) -> PhysicalSortRequirement {
    sort_requirement.expr =
        normalize_expr_with_equivalence_properties(sort_requirement.expr, eq_properties);
    sort_requirement
}

/// This function searches for the slice `section` inside the slice `given`.
/// It returns each range where `section` is compatible with the corresponding
/// slice in `given`.
fn get_compatible_ranges(
    given: &[PhysicalSortRequirement],
    section: &[PhysicalSortRequirement],
) -> Vec<Range<usize>> {
    let n_section = section.len();
    let n_end = if given.len() >= n_section {
        given.len() - n_section + 1
    } else {
        0
    };
    (0..n_end)
        .filter_map(|idx| {
            let end = idx + n_section;
            given[idx..end]
                .iter()
                .zip(section)
                .all(|(req, given)| given.compatible(req))
                .then_some(Range { start: idx, end })
        })
        .collect()
}

/// This function constructs a duplicate-free vector by filtering out duplicate
/// entries inside the given vector `input`.
fn collapse_vec<T: PartialEq>(input: Vec<T>) -> Vec<T> {
    let mut output = vec![];
    for item in input {
        if !output.contains(&item) {
            output.push(item);
        }
    }
    output
}

/// Transform `sort_exprs` vector, to standardized version using `eq_properties` and `ordering_eq_properties`
/// Assume `eq_properties` states that `Column a` and `Column b` are aliases.
/// Also assume `ordering_eq_properties` states that ordering `vec![d ASC]` and `vec![a ASC, c ASC]` are
/// ordering equivalent (in the sense that both describe the ordering of the table).
/// If the `sort_exprs` input to this function were `vec![b ASC, c ASC]`,
/// This function converts `sort_exprs` `vec![b ASC, c ASC]` to first `vec![a ASC, c ASC]` after considering `eq_properties`
/// Then converts `vec![a ASC, c ASC]` to `vec![d ASC]` after considering `ordering_eq_properties`.
/// Standardized version `vec![d ASC]` is used in subsequent operations.
pub fn normalize_sort_exprs(
    sort_exprs: &[PhysicalSortExpr],
    eq_properties: &[EquivalentClass],
    ordering_eq_properties: &[OrderingEquivalentClass],
) -> Vec<PhysicalSortExpr> {
    let sort_requirements = PhysicalSortRequirement::from_sort_exprs(sort_exprs.iter());
    let normalized_exprs = normalize_sort_requirements(
        &sort_requirements,
        eq_properties,
        ordering_eq_properties,
    );
    let normalized_exprs = PhysicalSortRequirement::to_sort_exprs(normalized_exprs);
    collapse_vec(normalized_exprs)
}
/// This function normalizes `oeq_classes` expressions according to `eq_properties`.
/// More explicitly, it makes sure that expressions in `oeq_classes` are head entries
/// in `eq_properties`, replacing any non-head entries with head entries if necessary.
pub fn normalize_ordering_equivalence_classes(
    oeq_classes: &[OrderingEquivalentClass],
    eq_properties: &EquivalenceProperties,
) -> Vec<OrderingEquivalentClass> {
    oeq_classes
        .iter()
        .map(|class| {
            let head = normalize_sort_exprs_with_equivalence_properties(
                class.head(),
                eq_properties,
            );

            let others = class
                .others()
                .iter()
                .map(|other| {
                    normalize_sort_exprs_with_equivalence_properties(other, eq_properties)
                })
                .collect();

            EquivalentClass::new(head, others)
        })
        .collect()
}

/// Transform `sort_reqs` vector, to standardized version using `eq_properties` and `ordering_eq_properties`
/// Assume `eq_properties` states that `Column a` and `Column b` are aliases.
/// Also assume `ordering_eq_properties` states that ordering `vec![d ASC]` and `vec![a ASC, c ASC]` are
/// ordering equivalent (in the sense that both describe the ordering of the table).
/// If the `sort_reqs` input to this function were `vec![b Some(ASC), c None]`,
/// This function converts `sort_exprs` `vec![b Some(ASC), c None]` to first `vec![a Some(ASC), c None]` after considering `eq_properties`
/// Then converts `vec![a Some(ASC), c None]` to `vec![d Some(ASC)]` after considering `ordering_eq_properties`.
/// Standardized version `vec![d Some(ASC)]` is used in subsequent operations.
pub fn normalize_sort_requirements(
    sort_reqs: &[PhysicalSortRequirement],
    eq_properties: &[EquivalentClass],
    ordering_eq_properties: &[OrderingEquivalentClass],
) -> Vec<PhysicalSortRequirement> {
    let mut normalized_exprs = sort_reqs
        .iter()
        .map(|sort_req| {
            normalize_sort_requirement_with_equivalence_properties(
                sort_req.clone(),
                eq_properties,
            )
        })
        .collect::<Vec<_>>();
    for ordering_eq_class in ordering_eq_properties {
        for item in ordering_eq_class.others() {
            let item = item
                .clone()
                .into_iter()
                .map(|elem| elem.into())
                .collect::<Vec<_>>();
            let ranges = get_compatible_ranges(&normalized_exprs, &item);
            let mut offset: i64 = 0;
            for Range { start, end } in ranges {
                let mut head = ordering_eq_class
                    .head()
                    .clone()
                    .into_iter()
                    .map(|elem| elem.into())
                    .collect::<Vec<PhysicalSortRequirement>>();
                let updated_start = (start as i64 + offset) as usize;
                let updated_end = (end as i64 + offset) as usize;
                let range = end - start;
                offset += head.len() as i64 - range as i64;
                let all_none = normalized_exprs[updated_start..updated_end]
                    .iter()
                    .all(|req| req.options.is_none());
                if all_none {
                    for req in head.iter_mut() {
                        req.options = None;
                    }
                }
                normalized_exprs.splice(updated_start..updated_end, head);
            }
        }
    }
    collapse_vec(normalized_exprs)
}

/// Checks whether given ordering requirements are satisfied by provided [PhysicalSortExpr]s.
pub fn ordering_satisfy<
    F: FnOnce() -> EquivalenceProperties,
    F2: FnOnce() -> OrderingEquivalenceProperties,
>(
    provided: Option<&[PhysicalSortExpr]>,
    required: Option<&[PhysicalSortExpr]>,
    equal_properties: F,
    ordering_equal_properties: F2,
) -> bool {
    match (provided, required) {
        (_, None) => true,
        (None, Some(_)) => false,
        (Some(provided), Some(required)) => ordering_satisfy_concrete(
            provided,
            required,
            equal_properties,
            ordering_equal_properties,
        ),
    }
}

/// Checks whether the required [`PhysicalSortExpr`]s are satisfied by the
/// provided [`PhysicalSortExpr`]s.
pub fn ordering_satisfy_concrete<
    F: FnOnce() -> EquivalenceProperties,
    F2: FnOnce() -> OrderingEquivalenceProperties,
>(
    provided: &[PhysicalSortExpr],
    required: &[PhysicalSortExpr],
    equal_properties: F,
    ordering_equal_properties: F2,
) -> bool {
    let oeq_properties = ordering_equal_properties();
    let ordering_eq_classes = oeq_properties.classes();
    let eq_properties = equal_properties();
    let eq_classes = eq_properties.classes();
    let required_normalized =
        normalize_sort_exprs(required, eq_classes, ordering_eq_classes);
    let provided_normalized =
        normalize_sort_exprs(provided, eq_classes, ordering_eq_classes);
    if required_normalized.len() > provided_normalized.len() {
        return false;
    }
    required_normalized
        .into_iter()
        .zip(provided_normalized)
        .all(|(req, given)| given == req)
}

/// Checks whether the given [`PhysicalSortRequirement`]s are satisfied by the
/// provided [`PhysicalSortExpr`]s.
pub fn ordering_satisfy_requirement<
    F: FnOnce() -> EquivalenceProperties,
    F2: FnOnce() -> OrderingEquivalenceProperties,
>(
    provided: Option<&[PhysicalSortExpr]>,
    required: Option<&[PhysicalSortRequirement]>,
    equal_properties: F,
    ordering_equal_properties: F2,
) -> bool {
    match (provided, required) {
        (_, None) => true,
        (None, Some(_)) => false,
        (Some(provided), Some(required)) => ordering_satisfy_requirement_concrete(
            provided,
            required,
            equal_properties,
            ordering_equal_properties,
        ),
    }
}

/// Checks whether the given [`PhysicalSortRequirement`]s are satisfied by the
/// provided [`PhysicalSortExpr`]s.
pub fn ordering_satisfy_requirement_concrete<
    F: FnOnce() -> EquivalenceProperties,
    F2: FnOnce() -> OrderingEquivalenceProperties,
>(
    provided: &[PhysicalSortExpr],
    required: &[PhysicalSortRequirement],
    equal_properties: F,
    ordering_equal_properties: F2,
) -> bool {
    let oeq_properties = ordering_equal_properties();
    let ordering_eq_classes = oeq_properties.classes();
    let eq_properties = equal_properties();
    let eq_classes = eq_properties.classes();
    let required_normalized =
        normalize_sort_requirements(required, eq_classes, ordering_eq_classes);
    let provided_normalized =
        normalize_sort_exprs(provided, eq_classes, ordering_eq_classes);
    if required_normalized.len() > provided_normalized.len() {
        return false;
    }
    required_normalized
        .into_iter()
        .zip(provided_normalized)
        .all(|(req, given)| given.satisfy(&req))
}

/// Checks whether the given [`PhysicalSortRequirement`]s are equal or more
/// specific than the provided [`PhysicalSortRequirement`]s.
pub fn requirements_compatible<
    F: FnOnce() -> OrderingEquivalenceProperties,
    F2: FnOnce() -> EquivalenceProperties,
>(
    provided: Option<&[PhysicalSortRequirement]>,
    required: Option<&[PhysicalSortRequirement]>,
    ordering_equal_properties: F,
    equal_properties: F2,
) -> bool {
    match (provided, required) {
        (_, None) => true,
        (None, Some(_)) => false,
        (Some(provided), Some(required)) => requirements_compatible_concrete(
            provided,
            required,
            ordering_equal_properties,
            equal_properties,
        ),
    }
}

/// Checks whether the given [`PhysicalSortRequirement`]s are equal or more
/// specific than the provided [`PhysicalSortRequirement`]s.
fn requirements_compatible_concrete<
    F: FnOnce() -> OrderingEquivalenceProperties,
    F2: FnOnce() -> EquivalenceProperties,
>(
    provided: &[PhysicalSortRequirement],
    required: &[PhysicalSortRequirement],
    ordering_equal_properties: F,
    equal_properties: F2,
) -> bool {
    let oeq_properties = ordering_equal_properties();
    let ordering_eq_classes = oeq_properties.classes();
    let eq_properties = equal_properties();
    let eq_classes = eq_properties.classes();

    let required_normalized =
        normalize_sort_requirements(required, eq_classes, ordering_eq_classes);
    let provided_normalized =
        normalize_sort_requirements(provided, eq_classes, ordering_eq_classes);
    if required_normalized.len() > provided_normalized.len() {
        return false;
    }
    required_normalized
        .into_iter()
        .zip(provided_normalized)
        .all(|(req, given)| given.compatible(&req))
}

/// This function maps back requirement after ProjectionExec
/// to the Executor for its input.
// Specifically, `ProjectionExec` changes index of `Column`s in the schema of its input executor.
// This function changes requirement given according to ProjectionExec schema to the requirement
// according to schema of input executor to the ProjectionExec.
// For instance, Column{"a", 0} would turn to Column{"a", 1}. Please note that this function assumes that
// name of the Column is unique. If we have a requirement such that Column{"a", 0}, Column{"a", 1}.
// This function will produce incorrect result (It will only emit single Column as a result).
pub fn map_columns_before_projection(
    parent_required: &[Arc<dyn PhysicalExpr>],
    proj_exprs: &[(Arc<dyn PhysicalExpr>, String)],
) -> Vec<Arc<dyn PhysicalExpr>> {
    let column_mapping = proj_exprs
        .iter()
        .filter_map(|(expr, name)| {
            expr.as_any()
                .downcast_ref::<Column>()
                .map(|column| (name.clone(), column.clone()))
        })
        .collect::<HashMap<_, _>>();
    parent_required
        .iter()
        .filter_map(|r| {
            r.as_any()
                .downcast_ref::<Column>()
                .and_then(|c| column_mapping.get(c.name()))
        })
        .map(|e| Arc::new(e.clone()) as _)
        .collect()
}

/// This function returns all `Arc<dyn PhysicalExpr>`s inside the given
/// `PhysicalSortExpr` sequence.
pub fn convert_to_expr<T: Borrow<PhysicalSortExpr>>(
    sequence: impl IntoIterator<Item = T>,
) -> Vec<Arc<dyn PhysicalExpr>> {
    sequence
        .into_iter()
        .map(|elem| elem.borrow().expr.clone())
        .collect()
}

/// This function finds the indices of `targets` within `items`, taking into
/// account equivalences according to `equal_properties`.
pub fn get_indices_of_matching_exprs<
    T: Borrow<Arc<dyn PhysicalExpr>>,
    F: FnOnce() -> EquivalenceProperties,
>(
    targets: impl IntoIterator<Item = T>,
    items: &[Arc<dyn PhysicalExpr>],
    equal_properties: F,
) -> Vec<usize> {
    if let eq_classes @ [_, ..] = equal_properties().classes() {
        let normalized_targets = targets.into_iter().map(|e| {
            normalize_expr_with_equivalence_properties(e.borrow().clone(), eq_classes)
        });
        let normalized_items = items
            .iter()
            .map(|e| normalize_expr_with_equivalence_properties(e.clone(), eq_classes))
            .collect::<Vec<_>>();
        get_indices_of_exprs_strict(normalized_targets, &normalized_items)
    } else {
        get_indices_of_exprs_strict(targets, items)
    }
}

/// This function finds the indices of `targets` within `items` using strict
/// equality.
pub fn get_indices_of_exprs_strict<T: Borrow<Arc<dyn PhysicalExpr>>>(
    targets: impl IntoIterator<Item = T>,
    items: &[Arc<dyn PhysicalExpr>],
) -> Vec<usize> {
    targets
        .into_iter()
        .filter_map(|target| items.iter().position(|e| e.eq(target.borrow())))
        .collect()
}

#[derive(Clone, Debug)]
pub struct ExprTreeNode<T> {
    expr: Arc<dyn PhysicalExpr>,
    data: Option<T>,
    child_nodes: Vec<ExprTreeNode<T>>,
}

impl<T> ExprTreeNode<T> {
    pub fn new(expr: Arc<dyn PhysicalExpr>) -> Self {
        ExprTreeNode {
            expr,
            data: None,
            child_nodes: vec![],
        }
    }

    pub fn expression(&self) -> &Arc<dyn PhysicalExpr> {
        &self.expr
    }

    pub fn children(&self) -> Vec<ExprTreeNode<T>> {
        self.expr
            .children()
            .into_iter()
            .map(ExprTreeNode::new)
            .collect()
    }
}

impl<T: Clone> TreeNode for ExprTreeNode<T> {
    fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
    where
        F: FnMut(&Self) -> Result<VisitRecursion>,
    {
        for child in self.children() {
            match op(&child)? {
                VisitRecursion::Continue => {}
                VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
                VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
            }
        }

        Ok(VisitRecursion::Continue)
    }

    fn map_children<F>(mut self, transform: F) -> Result<Self>
    where
        F: FnMut(Self) -> Result<Self>,
    {
        self.child_nodes = self
            .children()
            .into_iter()
            .map(transform)
            .collect::<Result<Vec<_>>>()?;
        Ok(self)
    }
}

/// This struct facilitates the [TreeNodeRewriter] mechanism to convert a
/// [PhysicalExpr] tree into a DAEG (i.e. an expression DAG) by collecting
/// identical expressions in one node. Caller specifies the node type in the
/// DAEG via the `constructor` argument, which constructs nodes in the DAEG
/// from the [ExprTreeNode] ancillary object.
struct PhysicalExprDAEGBuilder<'a, T, F: Fn(&ExprTreeNode<NodeIndex>) -> T> {
    // The resulting DAEG (expression DAG).
    graph: StableGraph<T, usize>,
    // A vector of visited expression nodes and their corresponding node indices.
    visited_plans: Vec<(Arc<dyn PhysicalExpr>, NodeIndex)>,
    // A function to convert an input expression node to T.
    constructor: &'a F,
}

impl<'a, T, F: Fn(&ExprTreeNode<NodeIndex>) -> T> TreeNodeRewriter
    for PhysicalExprDAEGBuilder<'a, T, F>
{
    type N = ExprTreeNode<NodeIndex>;
    // This method mutates an expression node by transforming it to a physical expression
    // and adding it to the graph. The method returns the mutated expression node.
    fn mutate(
        &mut self,
        mut node: ExprTreeNode<NodeIndex>,
    ) -> Result<ExprTreeNode<NodeIndex>> {
        // Get the expression associated with the input expression node.
        let expr = &node.expr;

        // Check if the expression has already been visited.
        let node_idx = match self.visited_plans.iter().find(|(e, _)| expr.eq(e)) {
            // If the expression has been visited, return the corresponding node index.
            Some((_, idx)) => *idx,
            // If the expression has not been visited, add a new node to the graph and
            // add edges to its child nodes. Add the visited expression to the vector
            // of visited expressions and return the newly created node index.
            None => {
                let node_idx = self.graph.add_node((self.constructor)(&node));
                for expr_node in node.child_nodes.iter() {
                    self.graph.add_edge(node_idx, expr_node.data.unwrap(), 0);
                }
                self.visited_plans.push((expr.clone(), node_idx));
                node_idx
            }
        };
        // Set the data field of the input expression node to the corresponding node index.
        node.data = Some(node_idx);
        // Return the mutated expression node.
        Ok(node)
    }
}

// A function that builds a directed acyclic graph of physical expression trees.
pub fn build_dag<T, F>(
    expr: Arc<dyn PhysicalExpr>,
    constructor: &F,
) -> Result<(NodeIndex, StableGraph<T, usize>)>
where
    F: Fn(&ExprTreeNode<NodeIndex>) -> T,
{
    // Create a new expression tree node from the input expression.
    let init = ExprTreeNode::new(expr);
    // Create a new `PhysicalExprDAEGBuilder` instance.
    let mut builder = PhysicalExprDAEGBuilder {
        graph: StableGraph::<T, usize>::new(),
        visited_plans: Vec::<(Arc<dyn PhysicalExpr>, NodeIndex)>::new(),
        constructor,
    };
    // Use the builder to transform the expression tree node into a DAG.
    let root = init.rewrite(&mut builder)?;
    // Return a tuple containing the root node index and the DAG.
    Ok((root.data.unwrap(), builder.graph))
}

/// Recursively extract referenced [`Column`]s within a [`PhysicalExpr`].
pub fn collect_columns(expr: &Arc<dyn PhysicalExpr>) -> HashSet<Column> {
    let mut columns = HashSet::<Column>::new();
    expr.apply(&mut |expr| {
        if let Some(column) = expr.as_any().downcast_ref::<Column>() {
            if !columns.iter().any(|c| c.eq(column)) {
                columns.insert(column.clone());
            }
        }
        Ok(VisitRecursion::Continue)
    })
    // pre_visit always returns OK, so this will always too
    .expect("no way to return error during recursion");
    columns
}

/// Re-assign column indices referenced in predicate according to given schema.
/// This may be helpful when dealing with projections.
pub fn reassign_predicate_columns(
    pred: Arc<dyn PhysicalExpr>,
    schema: &SchemaRef,
    ignore_not_found: bool,
) -> Result<Arc<dyn PhysicalExpr>> {
    pred.transform_down(&|expr| {
        let expr_any = expr.as_any();

        if let Some(column) = expr_any.downcast_ref::<Column>() {
            let index = match schema.index_of(column.name()) {
                Ok(idx) => idx,
                Err(_) if ignore_not_found => usize::MAX,
                Err(e) => return Err(e.into()),
            };
            return Ok(Transformed::Yes(Arc::new(Column::new(
                column.name(),
                index,
            ))));
        }
        Ok(Transformed::No(expr))
    })
}

/// Reverses the ORDER BY expression, which is useful during equivalent window
/// expression construction. For instance, 'ORDER BY a ASC, NULLS LAST' turns into
/// 'ORDER BY a DESC, NULLS FIRST'.
pub fn reverse_order_bys(order_bys: &[PhysicalSortExpr]) -> Vec<PhysicalSortExpr> {
    order_bys
        .iter()
        .map(|e| PhysicalSortExpr {
            expr: e.expr.clone(),
            options: !e.options,
        })
        .collect()
}

/// Find the finer requirement among `req1` and `req2`
/// If `None`, this means that `req1` and `req2` are not compatible
/// e.g there is no requirement that satisfies both
pub fn get_finer_ordering<
    'a,
    F: Fn() -> EquivalenceProperties,
    F2: Fn() -> OrderingEquivalenceProperties,
>(
    req1: &'a [PhysicalSortExpr],
    req2: &'a [PhysicalSortExpr],
    eq_properties: F,
    ordering_eq_properties: F2,
) -> Option<&'a [PhysicalSortExpr]> {
    if ordering_satisfy_concrete(req1, req2, &eq_properties, &ordering_eq_properties) {
        // Finer requirement is `provided`, since it satisfies the other:
        return Some(req1);
    }
    if ordering_satisfy_concrete(req2, req1, &eq_properties, &ordering_eq_properties) {
        // Finer requirement is `req`, since it satisfies the other:
        return Some(req2);
    }
    // Neither `provided` nor `req` satisfies one another, they are incompatible.
    None
}

/// Scatter `truthy` array by boolean mask. When the mask evaluates `true`, next values of `truthy`
/// are taken, when the mask evaluates `false` values null values are filled.
///
/// # Arguments
/// * `mask` - Boolean values used to determine where to put the `truthy` values
/// * `truthy` - All values of this array are to scatter according to `mask` into final result.
pub fn scatter(mask: &BooleanArray, truthy: &dyn Array) -> Result<ArrayRef> {
    let truthy = truthy.to_data();

    // update the mask so that any null values become false
    // (SlicesIterator doesn't respect nulls)
    let mask = and_kleene(mask, &is_not_null(mask)?)?;

    let mut mutable = MutableArrayData::new(vec![&truthy], true, mask.len());

    // the SlicesIterator slices only the true values. So the gaps left by this iterator we need to
    // fill with falsy values

    // keep track of how much is filled
    let mut filled = 0;
    // keep track of current position we have in truthy array
    let mut true_pos = 0;

    SlicesIterator::new(&mask).for_each(|(start, end)| {
        // the gap needs to be filled with nulls
        if start > filled {
            mutable.extend_nulls(start - filled);
        }
        // fill with truthy values
        let len = end - start;
        mutable.extend(0, true_pos, true_pos + len);
        true_pos += len;
        filled = end;
    });
    // the remaining part is falsy
    if filled < mask.len() {
        mutable.extend_nulls(mask.len() - filled);
    }

    let data = mutable.freeze();
    Ok(make_array(data))
}

/// Return indices of each item in `required_exprs` inside `provided_exprs`.
/// All the items should be found inside `provided_exprs`. Found indices will
/// be a permutation of the range 0, 1, ..., N. For example, \[2,1,0\] is valid
/// (\[0,1,2\] is consecutive), but \[3,1,0\] is not valid (\[0,1,3\] is not
/// consecutive).
fn get_lexicographical_match_indices(
    required_exprs: &[Arc<dyn PhysicalExpr>],
    provided_exprs: &[Arc<dyn PhysicalExpr>],
) -> Option<Vec<usize>> {
    let indices_of_equality = get_indices_of_exprs_strict(required_exprs, provided_exprs);
    let mut ordered_indices = indices_of_equality.clone();
    ordered_indices.sort();
    let n_match = indices_of_equality.len();
    let first_n = longest_consecutive_prefix(ordered_indices);
    (n_match == required_exprs.len() && first_n == n_match && n_match > 0)
        .then_some(indices_of_equality)
}

/// Attempts to find a full match between the required columns to be ordered (lexicographically), and
/// the provided sort options (lexicographically), while considering equivalence properties.
///
/// It starts by normalizing members of both the required columns and the provided sort options.
/// If a full match is found, returns the sort options and indices of the matches. If no full match is found,
/// the function proceeds to check against ordering equivalence properties. If still no full match is found,
/// the function returns `None`.
pub fn get_indices_of_matching_sort_exprs_with_order_eq(
    provided_sorts: &[PhysicalSortExpr],
    required_columns: &[Column],
    eq_properties: &EquivalenceProperties,
    order_eq_properties: &OrderingEquivalenceProperties,
) -> Option<(Vec<SortOptions>, Vec<usize>)> {
    // Create a vector of `PhysicalSortRequirement`s from the required columns:
    let sort_requirement_on_requirements = required_columns
        .iter()
        .map(|required_column| PhysicalSortRequirement {
            expr: Arc::new(required_column.clone()) as _,
            options: None,
        })
        .collect::<Vec<_>>();

    let normalized_required = normalize_sort_requirements(
        &sort_requirement_on_requirements,
        eq_properties.classes(),
        &[],
    );
    let normalized_provided = normalize_sort_requirements(
        &PhysicalSortRequirement::from_sort_exprs(provided_sorts.iter()),
        eq_properties.classes(),
        &[],
    );

    let provided_sorts = normalized_provided
        .iter()
        .map(|req| req.expr.clone())
        .collect::<Vec<_>>();

    let normalized_required_expr = normalized_required
        .iter()
        .map(|req| req.expr.clone())
        .collect::<Vec<_>>();

    if let Some(indices_of_equality) =
        get_lexicographical_match_indices(&normalized_required_expr, &provided_sorts)
    {
        return Some((
            indices_of_equality
                .iter()
                .filter_map(|index| normalized_provided[*index].options)
                .collect(),
            indices_of_equality,
        ));
    }

    // We did not find all the expressions, consult ordering equivalence properties:
    for class in order_eq_properties.classes() {
        let head = class.head();
        for ordering in class.others().iter().chain(std::iter::once(head)) {
            let order_eq_class_exprs = convert_to_expr(ordering);
            if let Some(indices_of_equality) = get_lexicographical_match_indices(
                &normalized_required_expr,
                &order_eq_class_exprs,
            ) {
                return Some((
                    indices_of_equality
                        .iter()
                        .map(|index| ordering[*index].options)
                        .collect(),
                    indices_of_equality,
                ));
            }
        }
    }
    // If no match found, return `None`:
    None
}

/// Calculates the output orderings for a set of expressions within the context of a given
/// execution plan. The resulting orderings are all in the type of [`Column`], since these
/// expressions become [`Column`] after the projection step. The expressions having an alias
/// are renamed with those aliases in the returned [`PhysicalSortExpr`]'s. If an expression
/// is found to be unordered, the corresponding entry in the output vector is `None`.
///
/// # Arguments
///
/// * `expr` - A slice of tuples containing expressions and their corresponding aliases.
///
/// * `input_output_ordering` - Output ordering of the input plan.
///
/// * `input_equal_properties` - Equivalence properties of the columns in the input plan.
///
/// * `input_ordering_equal_properties` - Ordering equivalence properties of the columns in the input plan.
///
/// # Returns
///
/// A `Result` containing a vector of optional [`PhysicalSortExpr`]'s. Each element of the
/// vector corresponds to an expression from the input slice. If an expression can be ordered,
/// the corresponding entry is `Some(PhysicalSortExpr)`. If an expression cannot be ordered,
/// the entry is `None`.
pub fn find_orderings_of_exprs(
    expr: &[(Arc<dyn PhysicalExpr>, String)],
    input_output_ordering: Option<&[PhysicalSortExpr]>,
    input_equal_properties: EquivalenceProperties,
    input_ordering_equal_properties: OrderingEquivalenceProperties,
) -> Result<Vec<Option<PhysicalSortExpr>>> {
    let mut orderings: Vec<Option<PhysicalSortExpr>> = vec![];
    if let Some(leading_ordering) =
        input_output_ordering.and_then(|output_ordering| output_ordering.first())
    {
        for (index, (expression, name)) in expr.iter().enumerate() {
            let initial_expr = ExprOrdering::new(expression.clone());
            let transformed = initial_expr.transform_up(&|expr| {
                update_ordering(
                    expr,
                    leading_ordering,
                    &input_equal_properties,
                    &input_ordering_equal_properties,
                )
            })?;
            if let Some(SortProperties::Ordered(sort_options)) = transformed.state {
                orderings.push(Some(PhysicalSortExpr {
                    expr: Arc::new(Column::new(name, index)),
                    options: sort_options,
                }));
            } else {
                orderings.push(None);
            }
        }
    } else {
        orderings.extend(expr.iter().map(|_| None));
    }
    Ok(orderings)
}

#[cfg(test)]
mod tests {
    use std::fmt::{Display, Formatter};
    use std::ops::Not;
    use std::sync::Arc;

    use super::*;
    use crate::equivalence::OrderingEquivalenceProperties;
    use crate::expressions::{binary, cast, col, in_list, lit, Column, Literal};
    use crate::PhysicalSortExpr;

    use arrow::compute::SortOptions;
    use arrow_array::Int32Array;
    use arrow_schema::{DataType, Field, Schema};
    use datafusion_common::cast::{as_boolean_array, as_int32_array};
    use datafusion_common::{Result, ScalarValue};

    use petgraph::visit::Bfs;

    #[derive(Clone)]
    struct DummyProperty {
        expr_type: String,
    }

    /// This is a dummy node in the DAEG; it stores a reference to the actual
    /// [PhysicalExpr] as well as a dummy property.
    #[derive(Clone)]
    struct PhysicalExprDummyNode {
        pub expr: Arc<dyn PhysicalExpr>,
        pub property: DummyProperty,
    }

    impl Display for PhysicalExprDummyNode {
        fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.expr)
        }
    }

    fn make_dummy_node(node: &ExprTreeNode<NodeIndex>) -> PhysicalExprDummyNode {
        let expr = node.expression().clone();
        let dummy_property = if expr.as_any().is::<BinaryExpr>() {
            "Binary"
        } else if expr.as_any().is::<Column>() {
            "Column"
        } else if expr.as_any().is::<Literal>() {
            "Literal"
        } else {
            "Other"
        }
        .to_owned();
        PhysicalExprDummyNode {
            expr,
            property: DummyProperty {
                expr_type: dummy_property,
            },
        }
    }

    // Generate a schema which consists of 5 columns (a, b, c, d, e)
    fn create_test_schema() -> Result<SchemaRef> {
        let a = Field::new("a", DataType::Int32, true);
        let b = Field::new("b", DataType::Int32, true);
        let c = Field::new("c", DataType::Int32, true);
        let d = Field::new("d", DataType::Int32, true);
        let e = Field::new("e", DataType::Int32, true);
        let schema = Arc::new(Schema::new(vec![a, b, c, d, e]));

        Ok(schema)
    }

    fn create_test_params() -> Result<(
        SchemaRef,
        EquivalenceProperties,
        OrderingEquivalenceProperties,
    )> {
        // Assume schema satisfies ordering a ASC NULLS LAST
        // and d ASC NULLS LAST, b ASC NULLS LAST and e DESC NULLS FIRST, b ASC NULLS LAST
        // Assume that column a and c are aliases.
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let col_d = &Column::new("d", 3);
        let col_e = &Column::new("e", 4);
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let option2 = SortOptions {
            descending: true,
            nulls_first: true,
        };
        let test_schema = create_test_schema()?;
        let mut eq_properties = EquivalenceProperties::new(test_schema.clone());
        eq_properties.add_equal_conditions((col_a, col_c));
        let mut ordering_eq_properties =
            OrderingEquivalenceProperties::new(test_schema.clone());
        ordering_eq_properties.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(col_a.clone()),
                options: option1,
            }],
            &vec![
                PhysicalSortExpr {
                    expr: Arc::new(col_d.clone()),
                    options: option1,
                },
                PhysicalSortExpr {
                    expr: Arc::new(col_b.clone()),
                    options: option1,
                },
            ],
        ));
        ordering_eq_properties.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(col_a.clone()),
                options: option1,
            }],
            &vec![
                PhysicalSortExpr {
                    expr: Arc::new(col_e.clone()),
                    options: option2,
                },
                PhysicalSortExpr {
                    expr: Arc::new(col_b.clone()),
                    options: option1,
                },
            ],
        ));
        Ok((test_schema, eq_properties, ordering_eq_properties))
    }

    #[test]
    fn test_build_dag() -> Result<()> {
        let schema = Schema::new(vec![
            Field::new("0", DataType::Int32, true),
            Field::new("1", DataType::Int32, true),
            Field::new("2", DataType::Int32, true),
        ]);
        let expr = binary(
            cast(
                binary(
                    col("0", &schema)?,
                    Operator::Plus,
                    col("1", &schema)?,
                    &schema,
                )?,
                &schema,
                DataType::Int64,
            )?,
            Operator::Gt,
            binary(
                cast(col("2", &schema)?, &schema, DataType::Int64)?,
                Operator::Plus,
                lit(ScalarValue::Int64(Some(10))),
                &schema,
            )?,
            &schema,
        )?;
        let mut vector_dummy_props = vec![];
        let (root, graph) = build_dag(expr, &make_dummy_node)?;
        let mut bfs = Bfs::new(&graph, root);
        while let Some(node_index) = bfs.next(&graph) {
            let node = &graph[node_index];
            vector_dummy_props.push(node.property.clone());
        }

        assert_eq!(
            vector_dummy_props
                .iter()
                .filter(|property| property.expr_type == "Binary")
                .count(),
            3
        );
        assert_eq!(
            vector_dummy_props
                .iter()
                .filter(|property| property.expr_type == "Column")
                .count(),
            3
        );
        assert_eq!(
            vector_dummy_props
                .iter()
                .filter(|property| property.expr_type == "Literal")
                .count(),
            1
        );
        assert_eq!(
            vector_dummy_props
                .iter()
                .filter(|property| property.expr_type == "Other")
                .count(),
            2
        );
        Ok(())
    }

    #[test]
    fn test_convert_to_expr() -> Result<()> {
        let schema = Schema::new(vec![Field::new("a", DataType::UInt64, false)]);
        let sort_expr = vec![PhysicalSortExpr {
            expr: col("a", &schema)?,
            options: Default::default(),
        }];
        assert!(convert_to_expr(&sort_expr)[0].eq(&sort_expr[0].expr));
        Ok(())
    }

    #[test]
    fn test_get_indices_of_matching_exprs() {
        let empty_schema = &Arc::new(Schema::empty());
        let equal_properties = || EquivalenceProperties::new(empty_schema.clone());
        let list1: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("c", 2)),
            Arc::new(Column::new("d", 3)),
        ];
        let list2: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("c", 2)),
            Arc::new(Column::new("a", 0)),
        ];
        assert_eq!(
            get_indices_of_matching_exprs(&list1, &list2, equal_properties),
            vec![2, 0, 1]
        );
        assert_eq!(
            get_indices_of_matching_exprs(&list2, &list1, equal_properties),
            vec![1, 2, 0]
        );
    }

    #[test]
    fn expr_list_eq_test() -> Result<()> {
        let list1: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("b", 1)),
        ];
        let list2: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("a", 0)),
        ];
        assert!(!expr_list_eq_any_order(list1.as_slice(), list2.as_slice()));
        assert!(!expr_list_eq_any_order(list2.as_slice(), list1.as_slice()));

        assert!(!expr_list_eq_strict_order(
            list1.as_slice(),
            list2.as_slice()
        ));
        assert!(!expr_list_eq_strict_order(
            list2.as_slice(),
            list1.as_slice()
        ));

        let list3: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("c", 2)),
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("b", 1)),
        ];
        let list4: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("b", 1)),
            Arc::new(Column::new("a", 0)),
            Arc::new(Column::new("c", 2)),
            Arc::new(Column::new("a", 0)),
        ];
        assert!(expr_list_eq_any_order(list3.as_slice(), list4.as_slice()));
        assert!(expr_list_eq_any_order(list4.as_slice(), list3.as_slice()));
        assert!(expr_list_eq_any_order(list3.as_slice(), list3.as_slice()));
        assert!(expr_list_eq_any_order(list4.as_slice(), list4.as_slice()));

        assert!(!expr_list_eq_strict_order(
            list3.as_slice(),
            list4.as_slice()
        ));
        assert!(!expr_list_eq_strict_order(
            list4.as_slice(),
            list3.as_slice()
        ));
        assert!(expr_list_eq_any_order(list3.as_slice(), list3.as_slice()));
        assert!(expr_list_eq_any_order(list4.as_slice(), list4.as_slice()));

        Ok(())
    }

    #[test]
    fn test_ordering_satisfy() -> Result<()> {
        let crude = vec![PhysicalSortExpr {
            expr: Arc::new(Column::new("a", 0)),
            options: SortOptions::default(),
        }];
        let crude = Some(&crude[..]);
        let finer = vec![
            PhysicalSortExpr {
                expr: Arc::new(Column::new("a", 0)),
                options: SortOptions::default(),
            },
            PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: SortOptions::default(),
            },
        ];
        let finer = Some(&finer[..]);
        let empty_schema = &Arc::new(Schema::empty());
        assert!(ordering_satisfy(
            finer,
            crude,
            || { EquivalenceProperties::new(empty_schema.clone()) },
            || { OrderingEquivalenceProperties::new(empty_schema.clone()) },
        ));
        assert!(!ordering_satisfy(
            crude,
            finer,
            || { EquivalenceProperties::new(empty_schema.clone()) },
            || { OrderingEquivalenceProperties::new(empty_schema.clone()) },
        ));
        Ok(())
    }

    #[test]
    fn test_ordering_satisfy_with_equivalence() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let col_d = &Column::new("d", 3);
        let col_e = &Column::new("e", 4);
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let option2 = SortOptions {
            descending: true,
            nulls_first: true,
        };
        // The schema is ordered by a ASC NULLS LAST, b ASC NULLS LAST
        let provided = vec![
            PhysicalSortExpr {
                expr: Arc::new(col_a.clone()),
                options: option1,
            },
            PhysicalSortExpr {
                expr: Arc::new(col_b.clone()),
                options: option1,
            },
        ];
        let provided = Some(&provided[..]);
        let (_test_schema, eq_properties, ordering_eq_properties) = create_test_params()?;
        // First element in the tuple stores vector of requirement, second element is the expected return value for ordering_satisfy function
        let requirements = vec![
            // `a ASC NULLS LAST`, expects `ordering_satisfy` to be `true`, since existing ordering `a ASC NULLS LAST, b ASC NULLS LAST` satisfies it
            (vec![(col_a, option1)], true),
            (vec![(col_a, option2)], false),
            // Test whether equivalence works as expected
            (vec![(col_c, option1)], true),
            (vec![(col_c, option2)], false),
            // Test whether ordering equivalence works as expected
            (vec![(col_d, option1)], false),
            (vec![(col_d, option1), (col_b, option1)], true),
            (vec![(col_d, option2), (col_b, option1)], false),
            (vec![(col_e, option2), (col_b, option1)], true),
            (vec![(col_e, option1), (col_b, option1)], false),
            (
                vec![
                    (col_d, option1),
                    (col_b, option1),
                    (col_d, option1),
                    (col_b, option1),
                ],
                true,
            ),
            (
                vec![
                    (col_d, option1),
                    (col_b, option1),
                    (col_e, option2),
                    (col_b, option1),
                ],
                true,
            ),
            (
                vec![
                    (col_d, option1),
                    (col_b, option1),
                    (col_d, option2),
                    (col_b, option1),
                ],
                false,
            ),
            (
                vec![
                    (col_d, option1),
                    (col_b, option1),
                    (col_e, option1),
                    (col_b, option1),
                ],
                false,
            ),
        ];
        for (cols, expected) in requirements {
            let err_msg = format!("Error in test case:{cols:?}");
            let required = cols
                .into_iter()
                .map(|(col, options)| PhysicalSortExpr {
                    expr: Arc::new(col.clone()),
                    options,
                })
                .collect::<Vec<_>>();

            let required = Some(&required[..]);
            assert_eq!(
                ordering_satisfy(
                    provided,
                    required,
                    || eq_properties.clone(),
                    || ordering_eq_properties.clone(),
                ),
                expected,
                "{err_msg}"
            );
        }
        Ok(())
    }

    fn convert_to_requirement(
        in_data: &[(&Column, Option<SortOptions>)],
    ) -> Vec<PhysicalSortRequirement> {
        in_data
            .iter()
            .map(|(col, options)| {
                PhysicalSortRequirement::new(Arc::new((*col).clone()) as _, *options)
            })
            .collect::<Vec<_>>()
    }

    #[test]
    fn test_normalize_sort_reqs() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let col_d = &Column::new("d", 3);
        let col_e = &Column::new("e", 4);
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let option2 = SortOptions {
            descending: true,
            nulls_first: true,
        };
        // First element in the tuple stores vector of requirement, second element is the expected return value for ordering_satisfy function
        let requirements = vec![
            (vec![(col_a, Some(option1))], vec![(col_a, Some(option1))]),
            (vec![(col_a, None)], vec![(col_a, None)]),
            // Test whether equivalence works as expected
            (vec![(col_c, Some(option1))], vec![(col_a, Some(option1))]),
            (vec![(col_c, None)], vec![(col_a, None)]),
            // Test whether ordering equivalence works as expected
            (
                vec![(col_d, Some(option1)), (col_b, Some(option1))],
                vec![(col_a, Some(option1))],
            ),
            (vec![(col_d, None), (col_b, None)], vec![(col_a, None)]),
            (
                vec![(col_e, Some(option2)), (col_b, Some(option1))],
                vec![(col_a, Some(option1))],
            ),
            // We should be able to normalize in compatible requirements also (not exactly equal)
            (
                vec![(col_e, Some(option2)), (col_b, None)],
                vec![(col_a, Some(option1))],
            ),
            (vec![(col_e, None), (col_b, None)], vec![(col_a, None)]),
        ];
        let (_test_schema, eq_properties, ordering_eq_properties) = create_test_params()?;
        let eq_classes = eq_properties.classes();
        let ordering_eq_classes = ordering_eq_properties.classes();
        for (reqs, expected_normalized) in requirements.into_iter() {
            let req = convert_to_requirement(&reqs);
            let expected_normalized = convert_to_requirement(&expected_normalized);

            assert_eq!(
                normalize_sort_requirements(&req, eq_classes, ordering_eq_classes),
                expected_normalized
            );
        }
        Ok(())
    }

    #[test]
    fn test_reassign_predicate_columns_in_list() {
        let int_field = Field::new("should_not_matter", DataType::Int64, true);
        let dict_field = Field::new(
            "id",
            DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8)),
            true,
        );
        let schema_small = Arc::new(Schema::new(vec![dict_field.clone()]));
        let schema_big = Arc::new(Schema::new(vec![int_field, dict_field]));
        let pred = in_list(
            Arc::new(Column::new_with_schema("id", &schema_big).unwrap()),
            vec![lit(ScalarValue::Dictionary(
                Box::new(DataType::Int32),
                Box::new(ScalarValue::from("2")),
            ))],
            &false,
            &schema_big,
        )
        .unwrap();

        let actual = reassign_predicate_columns(pred, &schema_small, false).unwrap();

        let expected = in_list(
            Arc::new(Column::new_with_schema("id", &schema_small).unwrap()),
            vec![lit(ScalarValue::Dictionary(
                Box::new(DataType::Int32),
                Box::new(ScalarValue::from("2")),
            ))],
            &false,
            &schema_small,
        )
        .unwrap();

        assert_eq!(actual.as_ref(), expected.as_any());
    }

    #[test]
    fn test_normalize_expr_with_equivalence() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let _col_d = &Column::new("d", 3);
        let _col_e = &Column::new("e", 4);
        // Assume that column a and c are aliases.
        let (_test_schema, eq_properties, _ordering_eq_properties) =
            create_test_params()?;

        let col_a_expr = Arc::new(col_a.clone()) as Arc<dyn PhysicalExpr>;
        let col_b_expr = Arc::new(col_b.clone()) as Arc<dyn PhysicalExpr>;
        let col_c_expr = Arc::new(col_c.clone()) as Arc<dyn PhysicalExpr>;
        // Test cases for equivalence normalization,
        // First entry in the tuple is argument, second entry is expected result after normalization.
        let expressions = vec![
            // Normalized version of the column a and c should go to a (since a is head)
            (&col_a_expr, &col_a_expr),
            (&col_c_expr, &col_a_expr),
            // Cannot normalize column b
            (&col_b_expr, &col_b_expr),
        ];
        for (expr, expected_eq) in expressions {
            assert!(
                expected_eq.eq(&normalize_expr_with_equivalence_properties(
                    expr.clone(),
                    eq_properties.classes()
                )),
                "error in test: expr: {expr:?}"
            );
        }

        Ok(())
    }

    #[test]
    fn test_normalize_sort_requirement_with_equivalence() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let _col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let col_d = &Column::new("d", 3);
        let _col_e = &Column::new("e", 4);
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        // Assume that column a and c are aliases.
        let (_test_schema, eq_properties, _ordering_eq_properties) =
            create_test_params()?;

        // Test cases for equivalence normalization
        // First entry in the tuple is PhysicalExpr, second entry is its ordering, third entry is result after normalization.
        let expressions = vec![
            (&col_a, Some(option1), &col_a, Some(option1)),
            (&col_c, Some(option1), &col_a, Some(option1)),
            (&col_c, None, &col_a, None),
            // Cannot normalize column d, since it is not in equivalence properties.
            (&col_d, Some(option1), &col_d, Some(option1)),
        ];
        for (expr, sort_options, expected_col, expected_options) in
            expressions.into_iter()
        {
            let expected = PhysicalSortRequirement::new(
                Arc::new((*expected_col).clone()) as _,
                expected_options,
            );
            let arg = PhysicalSortRequirement::new(
                Arc::new((*expr).clone()) as _,
                sort_options,
            );
            assert!(
                expected.eq(&normalize_sort_requirement_with_equivalence_properties(
                    arg.clone(),
                    eq_properties.classes()
                )),
                "error in test: expr: {expr:?}, sort_options: {sort_options:?}"
            );
        }

        Ok(())
    }

    #[test]
    fn test_ordering_satisfy_different_lengths() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let col_c = &Column::new("c", 2);
        let col_d = &Column::new("d", 3);
        let col_e = &Column::new("e", 4);
        let test_schema = create_test_schema()?;
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        // Column a and c are aliases.
        let mut eq_properties = EquivalenceProperties::new(test_schema.clone());
        eq_properties.add_equal_conditions((col_a, col_c));

        // Column a and e are ordering equivalent (e.g global ordering of the table can be described both as a ASC and e ASC.)
        let mut ordering_eq_properties = OrderingEquivalenceProperties::new(test_schema);
        ordering_eq_properties.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(col_a.clone()),
                options: option1,
            }],
            &vec![PhysicalSortExpr {
                expr: Arc::new(col_e.clone()),
                options: option1,
            }],
        ));
        let sort_req_a = PhysicalSortExpr {
            expr: Arc::new((col_a).clone()) as _,
            options: option1,
        };
        let sort_req_b = PhysicalSortExpr {
            expr: Arc::new((col_b).clone()) as _,
            options: option1,
        };
        let sort_req_c = PhysicalSortExpr {
            expr: Arc::new((col_c).clone()) as _,
            options: option1,
        };
        let sort_req_d = PhysicalSortExpr {
            expr: Arc::new((col_d).clone()) as _,
            options: option1,
        };
        let sort_req_e = PhysicalSortExpr {
            expr: Arc::new((col_e).clone()) as _,
            options: option1,
        };

        assert!(ordering_satisfy_concrete(
            // After normalization would be a ASC, b ASC, d ASC
            &[sort_req_a.clone(), sort_req_b.clone(), sort_req_d.clone()],
            // After normalization would be a ASC, b ASC, d ASC
            &[
                sort_req_c.clone(),
                sort_req_b.clone(),
                sort_req_a.clone(),
                sort_req_d.clone(),
                sort_req_e.clone(),
            ],
            || eq_properties.clone(),
            || ordering_eq_properties.clone(),
        ));

        assert!(!ordering_satisfy_concrete(
            // After normalization would be a ASC, b ASC
            &[sort_req_a.clone(), sort_req_b.clone()],
            // After normalization would be a ASC, b ASC, d ASC
            &[
                sort_req_c.clone(),
                sort_req_b.clone(),
                sort_req_a.clone(),
                sort_req_d.clone(),
                sort_req_e.clone(),
            ],
            || eq_properties.clone(),
            || ordering_eq_properties.clone(),
        ));

        assert!(!ordering_satisfy_concrete(
            // After normalization would be a ASC, b ASC, d ASC
            &[sort_req_a.clone(), sort_req_b.clone(), sort_req_d.clone()],
            // After normalization would be a ASC, d ASC, b ASC
            &[sort_req_c, sort_req_d, sort_req_a, sort_req_b, sort_req_e,],
            || eq_properties.clone(),
            || ordering_eq_properties.clone(),
        ));

        Ok(())
    }

    #[test]
    fn test_get_compatible_ranges() -> Result<()> {
        let col_a = &Column::new("a", 0);
        let col_b = &Column::new("b", 1);
        let option1 = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let test_data = vec![
            (
                vec![(col_a, Some(option1)), (col_b, Some(option1))],
                vec![(col_a, Some(option1))],
                vec![(0, 1)],
            ),
            (
                vec![(col_a, None), (col_b, Some(option1))],
                vec![(col_a, Some(option1))],
                vec![(0, 1)],
            ),
            (
                vec![
                    (col_a, None),
                    (col_b, Some(option1)),
                    (col_a, Some(option1)),
                ],
                vec![(col_a, Some(option1))],
                vec![(0, 1), (2, 3)],
            ),
        ];
        for (searched, to_search, expected) in test_data {
            let searched = convert_to_requirement(&searched);
            let to_search = convert_to_requirement(&to_search);
            let expected = expected
                .into_iter()
                .map(|(start, end)| Range { start, end })
                .collect::<Vec<_>>();
            assert_eq!(get_compatible_ranges(&searched, &to_search), expected);
        }
        Ok(())
    }

    #[test]
    fn test_collapse_vec() -> Result<()> {
        assert_eq!(collapse_vec(vec![1, 2, 3]), vec![1, 2, 3]);
        assert_eq!(collapse_vec(vec![1, 2, 3, 2, 3]), vec![1, 2, 3]);
        assert_eq!(collapse_vec(vec![3, 1, 2, 3, 2, 3]), vec![3, 1, 2]);
        Ok(())
    }

    #[test]
    fn test_collect_columns() -> Result<()> {
        let expr1 = Arc::new(Column::new("col1", 2)) as _;
        let mut expected = HashSet::new();
        expected.insert(Column::new("col1", 2));
        assert_eq!(collect_columns(&expr1), expected);

        let expr2 = Arc::new(Column::new("col2", 5)) as _;
        let mut expected = HashSet::new();
        expected.insert(Column::new("col2", 5));
        assert_eq!(collect_columns(&expr2), expected);

        let expr3 = Arc::new(BinaryExpr::new(expr1, Operator::Plus, expr2)) as _;
        let mut expected = HashSet::new();
        expected.insert(Column::new("col1", 2));
        expected.insert(Column::new("col2", 5));
        assert_eq!(collect_columns(&expr3), expected);
        Ok(())
    }

    #[test]
    fn scatter_int() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected =
            Int32Array::from_iter(vec![Some(1), Some(10), None, None, Some(11)]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_int_end_with_false() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11, 100]));
        let mask = BooleanArray::from(vec![true, false, true, false, false, false]);

        // output should be same length as mask
        let expected =
            Int32Array::from_iter(vec![Some(1), None, Some(10), None, None, None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_with_null_mask() -> Result<()> {
        let truthy = Arc::new(Int32Array::from(vec![1, 10, 11]));
        let mask: BooleanArray = vec![Some(false), None, Some(true), Some(true), None]
            .into_iter()
            .collect();

        // output should treat nulls as though they are false
        let expected = Int32Array::from_iter(vec![None, None, Some(1), Some(10), None]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_int32_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn scatter_boolean() -> Result<()> {
        let truthy = Arc::new(BooleanArray::from(vec![false, false, false, true]));
        let mask = BooleanArray::from(vec![true, true, false, false, true]);

        // the output array is expected to be the same length as the mask array
        let expected = BooleanArray::from_iter(vec![
            Some(false),
            Some(false),
            None,
            None,
            Some(false),
        ]);
        let result = scatter(&mask, truthy.as_ref())?;
        let result = as_boolean_array(&result)?;

        assert_eq!(&expected, result);
        Ok(())
    }

    #[test]
    fn test_get_indices_of_matching_sort_exprs_with_order_eq() -> Result<()> {
        let sort_options = SortOptions::default();
        let sort_options_not = SortOptions::default().not();

        let provided_sorts = [
            PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: sort_options_not,
            },
            PhysicalSortExpr {
                expr: Arc::new(Column::new("a", 0)),
                options: sort_options,
            },
        ];
        let required_columns = [Column::new("b", 1), Column::new("a", 0)];
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
        ]);
        let equal_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
        let ordering_equal_properties =
            OrderingEquivalenceProperties::new(Arc::new(schema));
        assert_eq!(
            get_indices_of_matching_sort_exprs_with_order_eq(
                &provided_sorts,
                &required_columns,
                &equal_properties,
                &ordering_equal_properties,
            ),
            Some((vec![sort_options_not, sort_options], vec![0, 1]))
        );

        // required columns are provided in the equivalence classes
        let provided_sorts = [PhysicalSortExpr {
            expr: Arc::new(Column::new("c", 2)),
            options: sort_options,
        }];
        let required_columns = [Column::new("b", 1), Column::new("a", 0)];
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
            Field::new("c", DataType::Int32, true),
        ]);
        let equal_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
        let mut ordering_equal_properties =
            OrderingEquivalenceProperties::new(Arc::new(schema));
        ordering_equal_properties.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(Column::new("c", 2)),
                options: sort_options,
            }],
            &vec![
                PhysicalSortExpr {
                    expr: Arc::new(Column::new("b", 1)),
                    options: sort_options_not,
                },
                PhysicalSortExpr {
                    expr: Arc::new(Column::new("a", 0)),
                    options: sort_options,
                },
            ],
        ));
        assert_eq!(
            get_indices_of_matching_sort_exprs_with_order_eq(
                &provided_sorts,
                &required_columns,
                &equal_properties,
                &ordering_equal_properties,
            ),
            Some((vec![sort_options_not, sort_options], vec![0, 1]))
        );

        // not satisfied orders
        let provided_sorts = [
            PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: sort_options_not,
            },
            PhysicalSortExpr {
                expr: Arc::new(Column::new("c", 2)),
                options: sort_options,
            },
            PhysicalSortExpr {
                expr: Arc::new(Column::new("a", 0)),
                options: sort_options,
            },
        ];
        let required_columns = [Column::new("b", 1), Column::new("a", 0)];
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
            Field::new("c", DataType::Int32, true),
        ]);
        let equal_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
        let ordering_equal_properties =
            OrderingEquivalenceProperties::new(Arc::new(schema));
        assert_eq!(
            get_indices_of_matching_sort_exprs_with_order_eq(
                &provided_sorts,
                &required_columns,
                &equal_properties,
                &ordering_equal_properties,
            ),
            None
        );

        Ok(())
    }

    #[test]
    fn test_normalize_ordering_equivalence_classes() -> Result<()> {
        let sort_options = SortOptions::default();

        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
            Field::new("c", DataType::Int32, true),
        ]);
        let mut equal_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
        let mut ordering_equal_properties =
            OrderingEquivalenceProperties::new(Arc::new(schema.clone()));
        let mut expected_oeq = OrderingEquivalenceProperties::new(Arc::new(schema));

        equal_properties
            .add_equal_conditions((&Column::new("a", 0), &Column::new("c", 2)));
        ordering_equal_properties.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: sort_options,
            }],
            &vec![PhysicalSortExpr {
                expr: Arc::new(Column::new("c", 2)),
                options: sort_options,
            }],
        ));
        expected_oeq.add_equal_conditions((
            &vec![PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: sort_options,
            }],
            &vec![PhysicalSortExpr {
                expr: Arc::new(Column::new("a", 0)),
                options: sort_options,
            }],
        ));

        assert!(!normalize_ordering_equivalence_classes(
            ordering_equal_properties.classes(),
            &equal_properties,
        )
        .iter()
        .zip(expected_oeq.classes())
        .any(|(a, b)| a.head().ne(b.head()) || a.others().ne(b.others())));

        Ok(())
    }

    #[test]
    fn project_empty_output_ordering() -> Result<()> {
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
            Field::new("c", DataType::Int32, true),
        ]);
        let orderings = find_orderings_of_exprs(
            &[
                (Arc::new(Column::new("b", 1)), "b_new".to_string()),
                (Arc::new(Column::new("a", 0)), "a_new".to_string()),
            ],
            Some(&[PhysicalSortExpr {
                expr: Arc::new(Column::new("b", 1)),
                options: SortOptions::default(),
            }]),
            EquivalenceProperties::new(Arc::new(schema.clone())),
            OrderingEquivalenceProperties::new(Arc::new(schema.clone())),
        )?;

        assert_eq!(
            vec![
                Some(PhysicalSortExpr {
                    expr: Arc::new(Column::new("b_new", 0)),
                    options: SortOptions::default(),
                }),
                None,
            ],
            orderings
        );

        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, true),
            Field::new("b", DataType::Int32, true),
            Field::new("c", DataType::Int32, true),
        ]);
        let orderings = find_orderings_of_exprs(
            &[
                (Arc::new(Column::new("c", 2)), "c_new".to_string()),
                (Arc::new(Column::new("b", 1)), "b_new".to_string()),
            ],
            Some(&[]),
            EquivalenceProperties::new(Arc::new(schema.clone())),
            OrderingEquivalenceProperties::new(Arc::new(schema)),
        )?;

        assert_eq!(vec![None, None], orderings);

        Ok(())
    }
}