1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::{PhysicalExpr, PhysicalSortExpr};
use arrow::array::{new_empty_array, Array, ArrayRef};
use arrow::compute::kernels::sort::SortColumn;
use arrow::compute::SortOptions;
use arrow::datatypes::Field;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::window_state::{
PartitionBatchState, WindowAggState, WindowFrameContext,
};
use datafusion_expr::PartitionEvaluator;
use datafusion_expr::{Accumulator, WindowFrame};
use indexmap::IndexMap;
use std::any::Any;
use std::fmt::Debug;
use std::ops::Range;
use std::sync::Arc;
/// Common trait for [window function] implementations
///
/// # Aggregate Window Expressions
///
/// These expressions take the form
///
/// ```text
/// OVER({ROWS | RANGE| GROUPS} BETWEEN UNBOUNDED PRECEDING AND ...)
/// ```
///
/// For example, cumulative window frames uses `PlainAggregateWindowExpr`.
///
/// # Non Aggregate Window Expressions
///
/// The expressions have the form
///
/// ```text
/// OVER({ROWS | RANGE| GROUPS} BETWEEN M {PRECEDING| FOLLOWING} AND ...)
/// ```
///
/// For example, sliding window frames use [`SlidingAggregateWindowExpr`].
///
/// [window function]: https://en.wikipedia.org/wiki/Window_function_(SQL)
/// [`PlainAggregateWindowExpr`]: crate::window::PlainAggregateWindowExpr
/// [`SlidingAggregateWindowExpr`]: crate::window::SlidingAggregateWindowExpr
pub trait WindowExpr: Send + Sync + Debug {
/// Returns the window expression as [`Any`](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// The field of the final result of this window function.
fn field(&self) -> Result<Field>;
/// Human readable name such as `"MIN(c2)"` or `"RANK()"`. The default
/// implementation returns placeholder text.
fn name(&self) -> &str {
"WindowExpr: default name"
}
/// Expressions that are passed to the WindowAccumulator.
/// Functions which take a single input argument, such as `sum`, return a single [`datafusion_expr::expr::Expr`],
/// others (e.g. `cov`) return many.
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Evaluate the window function arguments against the batch and return
/// array ref, normally the resulting `Vec` is a single element one.
fn evaluate_args(&self, batch: &RecordBatch) -> Result<Vec<ArrayRef>> {
self.expressions()
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect()
}
/// Evaluate the window function values against the batch
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>;
/// Evaluate the window function against the batch. This function facilitates
/// stateful, bounded-memory implementations.
fn evaluate_stateful(
&self,
_partition_batches: &PartitionBatches,
_window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
internal_err!("evaluate_stateful is not implemented for {}", self.name())
}
/// Expressions that's from the window function's partition by clause, empty if absent
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>];
/// Expressions that's from the window function's order by clause, empty if absent
fn order_by(&self) -> &[PhysicalSortExpr];
/// Get order by columns, empty if absent
fn order_by_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
self.order_by()
.iter()
.map(|e| e.evaluate_to_sort_column(batch))
.collect::<Result<Vec<SortColumn>>>()
}
/// Get the window frame of this [WindowExpr].
fn get_window_frame(&self) -> &Arc<WindowFrame>;
/// Return a flag indicating whether this [WindowExpr] can run with
/// bounded memory.
fn uses_bounded_memory(&self) -> bool;
/// Get the reverse expression of this [WindowExpr].
fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>>;
}
/// Extension trait that adds common functionality to [`AggregateWindowExpr`]s
pub trait AggregateWindowExpr: WindowExpr {
/// Get the accumulator for the window expression. Note that distinct
/// window expressions may return distinct accumulators; e.g. sliding
/// (non-sliding) expressions will return sliding (normal) accumulators.
fn get_accumulator(&self) -> Result<Box<dyn Accumulator>>;
/// Given current range and the last range, calculates the accumulator
/// result for the range of interest.
fn get_aggregate_result_inside_range(
&self,
last_range: &Range<usize>,
cur_range: &Range<usize>,
value_slice: &[ArrayRef],
accumulator: &mut Box<dyn Accumulator>,
) -> Result<ScalarValue>;
/// Evaluates the window function against the batch.
fn aggregate_evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
let mut accumulator = self.get_accumulator()?;
let mut last_range = Range { start: 0, end: 0 };
let sort_options: Vec<SortOptions> =
self.order_by().iter().map(|o| o.options).collect();
let mut window_frame_ctx =
WindowFrameContext::new(self.get_window_frame().clone(), sort_options);
self.get_result_column(
&mut accumulator,
batch,
&mut last_range,
&mut window_frame_ctx,
0,
false,
)
}
/// Statefully evaluates the window function against the batch. Maintains
/// state so that it can work incrementally over multiple chunks.
fn aggregate_evaluate_stateful(
&self,
partition_batches: &PartitionBatches,
window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
let field = self.field()?;
let out_type = field.data_type();
for (partition_row, partition_batch_state) in partition_batches.iter() {
if !window_agg_state.contains_key(partition_row) {
let accumulator = self.get_accumulator()?;
window_agg_state.insert(
partition_row.clone(),
WindowState {
state: WindowAggState::new(out_type)?,
window_fn: WindowFn::Aggregate(accumulator),
},
);
};
let window_state =
window_agg_state.get_mut(partition_row).ok_or_else(|| {
DataFusionError::Execution("Cannot find state".to_string())
})?;
let accumulator = match &mut window_state.window_fn {
WindowFn::Aggregate(accumulator) => accumulator,
_ => unreachable!(),
};
let state = &mut window_state.state;
let record_batch = &partition_batch_state.record_batch;
// If there is no window state context, initialize it.
let window_frame_ctx = state.window_frame_ctx.get_or_insert_with(|| {
let sort_options: Vec<SortOptions> =
self.order_by().iter().map(|o| o.options).collect();
WindowFrameContext::new(self.get_window_frame().clone(), sort_options)
});
let out_col = self.get_result_column(
accumulator,
record_batch,
// Start search from the last range
&mut state.window_frame_range,
window_frame_ctx,
state.last_calculated_index,
!partition_batch_state.is_end,
)?;
state.update(&out_col, partition_batch_state)?;
}
Ok(())
}
/// Calculates the window expression result for the given record batch.
/// Assumes that `record_batch` belongs to a single partition.
fn get_result_column(
&self,
accumulator: &mut Box<dyn Accumulator>,
record_batch: &RecordBatch,
last_range: &mut Range<usize>,
window_frame_ctx: &mut WindowFrameContext,
mut idx: usize,
not_end: bool,
) -> Result<ArrayRef> {
let values = self.evaluate_args(record_batch)?;
let order_bys = get_orderby_values(self.order_by_columns(record_batch)?);
// We iterate on each row to perform a running calculation.
let length = values[0].len();
let mut row_wise_results: Vec<ScalarValue> = vec![];
while idx < length {
// Start search from the last_range. This squeezes searched range.
let cur_range =
window_frame_ctx.calculate_range(&order_bys, last_range, length, idx)?;
// Exit if the range extends all the way:
if cur_range.end == length && not_end {
break;
}
let value = self.get_aggregate_result_inside_range(
last_range,
&cur_range,
&values,
accumulator,
)?;
// Update last range
*last_range = cur_range;
row_wise_results.push(value);
idx += 1;
}
if row_wise_results.is_empty() {
let field = self.field()?;
let out_type = field.data_type();
Ok(new_empty_array(out_type))
} else {
ScalarValue::iter_to_array(row_wise_results)
}
}
}
/// Get order by expression results inside `order_by_columns`.
pub(crate) fn get_orderby_values(order_by_columns: Vec<SortColumn>) -> Vec<ArrayRef> {
order_by_columns.into_iter().map(|s| s.values).collect()
}
#[derive(Debug)]
pub enum WindowFn {
Builtin(Box<dyn PartitionEvaluator>),
Aggregate(Box<dyn Accumulator>),
}
/// State for the RANK(percent_rank, rank, dense_rank) built-in window function.
#[derive(Debug, Clone, Default)]
pub struct RankState {
/// The last values for rank as these values change, we increase n_rank
pub last_rank_data: Vec<ScalarValue>,
/// The index where last_rank_boundary is started
pub last_rank_boundary: usize,
/// Keep the number of entries in current rank
pub current_group_count: usize,
/// Rank number kept from the start
pub n_rank: usize,
}
/// State for the 'ROW_NUMBER' built-in window function.
#[derive(Debug, Clone, Default)]
pub struct NumRowsState {
pub n_rows: usize,
}
/// Tag to differentiate special use cases of the NTH_VALUE built-in window function.
#[derive(Debug, Copy, Clone)]
pub enum NthValueKind {
First,
Last,
Nth(u32),
}
#[derive(Debug, Clone)]
pub struct NthValueState {
pub range: Range<usize>,
// In certain cases, we can finalize the result early. Consider this usage:
// ```
// FIRST_VALUE(increasing_col) OVER window AS my_first_value
// WINDOW (ORDER BY ts ASC ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING) AS window
// ```
// The result will always be the first entry in the table. We can store such
// early-finalizing results and then just reuse them as necessary. This opens
// opportunities to prune our datasets.
pub finalized_result: Option<ScalarValue>,
pub kind: NthValueKind,
}
/// Key for IndexMap for each unique partition
///
/// For instance, if window frame is `OVER(PARTITION BY a,b)`,
/// PartitionKey would consist of unique `[a,b]` pairs
pub type PartitionKey = Vec<ScalarValue>;
#[derive(Debug)]
pub struct WindowState {
pub state: WindowAggState,
pub window_fn: WindowFn,
}
pub type PartitionWindowAggStates = IndexMap<PartitionKey, WindowState>;
/// The IndexMap (i.e. an ordered HashMap) where record batches are separated for each partition.
pub type PartitionBatches = IndexMap<PartitionKey, PartitionBatchState>;