1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines physical expressions which specify ordering requirement
//! that can evaluated at runtime during query execution
use std::any::Any;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::fmt::Debug;
use std::sync::Arc;
use crate::aggregate::utils::{down_cast_any_ref, ordering_fields};
use crate::expressions::format_state_name;
use crate::{AggregateExpr, LexOrdering, PhysicalExpr, PhysicalSortExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::{Array, ListArray};
use arrow_schema::{Fields, SortOptions};
use datafusion_common::utils::{compare_rows, get_row_at_idx};
use datafusion_common::{exec_err, internal_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::Accumulator;
use itertools::izip;
/// Expression for a ARRAY_AGG(ORDER BY) aggregation.
/// When aggregation works in multiple partitions
/// aggregations are split into multiple partitions,
/// then their results are merged. This aggregator
/// is a version of ARRAY_AGG that can support producing
/// intermediate aggregation (with necessary side information)
/// and that can merge aggregations from multiple partitions.
#[derive(Debug)]
pub struct OrderSensitiveArrayAgg {
name: String,
input_data_type: DataType,
order_by_data_types: Vec<DataType>,
expr: Arc<dyn PhysicalExpr>,
ordering_req: LexOrdering,
}
impl OrderSensitiveArrayAgg {
/// Create a new `OrderSensitiveArrayAgg` aggregate function
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
input_data_type: DataType,
order_by_data_types: Vec<DataType>,
ordering_req: LexOrdering,
) -> Self {
Self {
name: name.into(),
expr,
input_data_type,
order_by_data_types,
ordering_req,
}
}
}
impl AggregateExpr for OrderSensitiveArrayAgg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new_list(
&self.name,
Field::new("item", self.input_data_type.clone(), true),
false,
))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(OrderSensitiveArrayAggAccumulator::try_new(
&self.input_data_type,
&self.order_by_data_types,
self.ordering_req.clone(),
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
let mut fields = vec![Field::new_list(
format_state_name(&self.name, "array_agg"),
Field::new("item", self.input_data_type.clone(), true),
false,
)];
let orderings = ordering_fields(&self.ordering_req, &self.order_by_data_types);
fields.push(Field::new_list(
format_state_name(&self.name, "array_agg_orderings"),
Field::new("item", DataType::Struct(Fields::from(orderings)), true),
false,
));
Ok(fields)
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
if self.ordering_req.is_empty() {
None
} else {
Some(&self.ordering_req)
}
}
fn name(&self) -> &str {
&self.name
}
}
impl PartialEq<dyn Any> for OrderSensitiveArrayAgg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.input_data_type == x.input_data_type
&& self.order_by_data_types == x.order_by_data_types
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
#[derive(Debug)]
pub(crate) struct OrderSensitiveArrayAggAccumulator {
// `values` stores entries in the ARRAY_AGG result.
values: Vec<ScalarValue>,
// `ordering_values` stores values of ordering requirement expression
// corresponding to each value in the ARRAY_AGG.
// For each `ScalarValue` inside `values`, there will be a corresponding
// `Vec<ScalarValue>` inside `ordering_values` which stores it ordering.
// This information is used during merging results of the different partitions.
// For detailed information how merging is done see [`merge_ordered_arrays`]
ordering_values: Vec<Vec<ScalarValue>>,
// `datatypes` stores, datatype of expression inside ARRAY_AGG and ordering requirement expressions.
datatypes: Vec<DataType>,
// Stores ordering requirement of the Accumulator
ordering_req: LexOrdering,
}
impl OrderSensitiveArrayAggAccumulator {
/// Create a new order-sensitive ARRAY_AGG accumulator based on the given
/// item data type.
pub fn try_new(
datatype: &DataType,
ordering_dtypes: &[DataType],
ordering_req: LexOrdering,
) -> Result<Self> {
let mut datatypes = vec![datatype.clone()];
datatypes.extend(ordering_dtypes.iter().cloned());
Ok(Self {
values: vec![],
ordering_values: vec![],
datatypes,
ordering_req,
})
}
}
impl Accumulator for OrderSensitiveArrayAggAccumulator {
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
let n_row = values[0].len();
for index in 0..n_row {
let row = get_row_at_idx(values, index)?;
self.values.push(row[0].clone());
self.ordering_values.push(row[1..].to_vec());
}
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
// First entry in the state is the aggregation result.
let array_agg_values = &states[0];
// 2nd entry stores values received for ordering requirement columns, for each aggregation value inside ARRAY_AGG list.
// For each `ScalarValue` inside ARRAY_AGG list, we will receive a `Vec<ScalarValue>` that stores
// values received from its ordering requirement expression. (This information is necessary for during merging).
let agg_orderings = &states[1];
if agg_orderings.as_any().is::<ListArray>() {
// Stores ARRAY_AGG results coming from each partition
let mut partition_values = vec![];
// Stores ordering requirement expression results coming from each partition
let mut partition_ordering_values = vec![];
// Existing values should be merged also.
partition_values.push(self.values.clone());
partition_ordering_values.push(self.ordering_values.clone());
for index in 0..agg_orderings.len() {
let ordering = ScalarValue::try_from_array(agg_orderings, index)?;
// Ordering requirement expression values for each entry in the ARRAY_AGG list
let other_ordering_values =
self.convert_array_agg_to_orderings(ordering)?;
// ARRAY_AGG result. (It is a `ScalarValue::List` under the hood, it stores `Vec<ScalarValue>`)
let array_agg_res = ScalarValue::try_from_array(array_agg_values, index)?;
if let ScalarValue::List(Some(other_values), _) = array_agg_res {
partition_values.push(other_values);
partition_ordering_values.push(other_ordering_values);
} else {
return internal_err!("ARRAY_AGG state must be list!");
}
}
let sort_options = self
.ordering_req
.iter()
.map(|sort_expr| sort_expr.options)
.collect::<Vec<_>>();
let (new_values, new_orderings) = merge_ordered_arrays(
&partition_values,
&partition_ordering_values,
&sort_options,
)?;
self.values = new_values;
self.ordering_values = new_orderings;
} else {
return exec_err!("Expects to receive a list array");
}
Ok(())
}
fn state(&self) -> Result<Vec<ScalarValue>> {
let mut result = vec![self.evaluate()?];
result.push(self.evaluate_orderings()?);
Ok(result)
}
fn evaluate(&self) -> Result<ScalarValue> {
Ok(ScalarValue::new_list(
Some(self.values.clone()),
self.datatypes[0].clone(),
))
}
fn size(&self) -> usize {
let mut total = std::mem::size_of_val(self)
+ ScalarValue::size_of_vec(&self.values)
- std::mem::size_of_val(&self.values);
// Add size of the `self.ordering_values`
total +=
std::mem::size_of::<Vec<ScalarValue>>() * self.ordering_values.capacity();
for row in &self.ordering_values {
total += ScalarValue::size_of_vec(row) - std::mem::size_of_val(row);
}
// Add size of the `self.datatypes`
total += std::mem::size_of::<DataType>() * self.datatypes.capacity();
for dtype in &self.datatypes {
total += dtype.size() - std::mem::size_of_val(dtype);
}
// Add size of the `self.ordering_req`
total += std::mem::size_of::<PhysicalSortExpr>() * self.ordering_req.capacity();
// TODO: Calculate size of each `PhysicalSortExpr` more accurately.
total
}
}
impl OrderSensitiveArrayAggAccumulator {
fn convert_array_agg_to_orderings(
&self,
in_data: ScalarValue,
) -> Result<Vec<Vec<ScalarValue>>> {
if let ScalarValue::List(Some(list_vals), _field_ref) = in_data {
list_vals.into_iter().map(|struct_vals| {
if let ScalarValue::Struct(Some(orderings), _fields) = struct_vals {
Ok(orderings)
} else {
exec_err!(
"Expects to receive ScalarValue::Struct(Some(..), _) but got:{:?}",
struct_vals.get_datatype()
)
}
}).collect::<Result<Vec<_>>>()
} else {
exec_err!(
"Expects to receive ScalarValue::List(Some(..), _) but got:{:?}",
in_data.get_datatype()
)
}
}
fn evaluate_orderings(&self) -> Result<ScalarValue> {
let fields = ordering_fields(&self.ordering_req, &self.datatypes[1..]);
let struct_field = Fields::from(fields.clone());
let orderings = self
.ordering_values
.iter()
.map(|ordering| {
ScalarValue::Struct(Some(ordering.clone()), struct_field.clone())
})
.collect();
let struct_type = DataType::Struct(Fields::from(fields));
Ok(ScalarValue::new_list(Some(orderings), struct_type))
}
}
/// This is a wrapper struct to be able to correctly merge ARRAY_AGG
/// data from multiple partitions using `BinaryHeap`.
/// When used inside `BinaryHeap` this struct returns smallest `CustomElement`,
/// where smallest is determined by `ordering` values (`Vec<ScalarValue>`)
/// according to `sort_options`
#[derive(Debug, PartialEq, Eq)]
struct CustomElement<'a> {
// Stores from which partition entry is received
branch_idx: usize,
// values to be merged
value: ScalarValue,
// according to `ordering` values, comparisons will be done.
ordering: Vec<ScalarValue>,
// `sort_options` defines, desired ordering by the user
sort_options: &'a [SortOptions],
}
impl<'a> CustomElement<'a> {
fn new(
branch_idx: usize,
value: ScalarValue,
ordering: Vec<ScalarValue>,
sort_options: &'a [SortOptions],
) -> Self {
Self {
branch_idx,
value,
ordering,
sort_options,
}
}
fn ordering(
&self,
current: &[ScalarValue],
target: &[ScalarValue],
) -> Result<Ordering> {
// Calculate ordering according to `sort_options`
compare_rows(current, target, self.sort_options)
}
}
// Overwrite ordering implementation such that
// - `self.ordering` values are used for comparison,
// - When used inside `BinaryHeap` it is a min-heap.
impl<'a> Ord for CustomElement<'a> {
fn cmp(&self, other: &Self) -> Ordering {
// Compares according to custom ordering
self.ordering(&self.ordering, &other.ordering)
// Convert max heap to min heap
.map(|ordering| ordering.reverse())
// This function return error, when `self.ordering` and `other.ordering`
// have different types (such as one is `ScalarValue::Int64`, other is `ScalarValue::Float32`)
// Here this case won't happen, because data from each partition will have same type
.unwrap()
}
}
impl<'a> PartialOrd for CustomElement<'a> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// This functions merges `values` array (`&[Vec<ScalarValue>]`) into single array `Vec<ScalarValue>`
/// Merging done according to ordering values stored inside `ordering_values` (`&[Vec<Vec<ScalarValue>>]`)
/// Inner `Vec<ScalarValue>` in the `ordering_values` can be thought as ordering information for the
/// each `ScalarValue` in the `values` array.
/// Desired ordering specified by `sort_options` argument (Should have same size with inner `Vec<ScalarValue>`
/// of the `ordering_values` array).
///
/// As an example
/// values can be \[
/// \[1, 2, 3, 4, 5\],
/// \[1, 2, 3, 4\],
/// \[1, 2, 3, 4, 5, 6\],
/// \]
/// In this case we will be merging three arrays (doesn't have to be same size)
/// and produce a merged array with size 15 (sum of 5+4+6)
/// Merging will be done according to ordering at `ordering_values` vector.
/// As an example `ordering_values` can be [
/// \[(1, a), (2, b), (3, b), (4, a), (5, b) \],
/// \[(1, a), (2, b), (3, b), (4, a) \],
/// \[(1, b), (2, c), (3, d), (4, e), (5, a), (6, b) \],
/// ]
/// For each ScalarValue in the `values` we have a corresponding `Vec<ScalarValue>` (like timestamp of it)
/// for the example above `sort_options` will have size two, that defines ordering requirement of the merge.
/// Inner `Vec<ScalarValue>`s of the `ordering_values` will be compared according `sort_options` (Their sizes should match)
fn merge_ordered_arrays(
// We will merge values into single `Vec<ScalarValue>`.
values: &[Vec<ScalarValue>],
// `values` will be merged according to `ordering_values`.
// Inner `Vec<ScalarValue>` can be thought as ordering information for the
// each `ScalarValue` in the values`.
ordering_values: &[Vec<Vec<ScalarValue>>],
// Defines according to which ordering comparisons should be done.
sort_options: &[SortOptions],
) -> Result<(Vec<ScalarValue>, Vec<Vec<ScalarValue>>)> {
// Keep track the most recent data of each branch, in binary heap data structure.
let mut heap: BinaryHeap<CustomElement> = BinaryHeap::new();
if !(values.len() == ordering_values.len()
&& values
.iter()
.zip(ordering_values.iter())
.all(|(vals, ordering_vals)| vals.len() == ordering_vals.len()))
{
return exec_err!(
"Expects values arguments and/or ordering_values arguments to have same size"
);
}
let n_branch = values.len();
// For each branch we keep track of indices of next will be merged entry
let mut indices = vec![0_usize; n_branch];
// Keep track of sizes of each branch.
let end_indices = (0..n_branch)
.map(|idx| values[idx].len())
.collect::<Vec<_>>();
let mut merged_values = vec![];
let mut merged_orderings = vec![];
// Continue iterating the loop until consuming data of all branches.
loop {
let min_elem = if let Some(min_elem) = heap.pop() {
min_elem
} else {
// Heap is empty, fill it with the next entries from each branch.
for (idx, end_idx, ordering, branch_index) in izip!(
indices.iter(),
end_indices.iter(),
ordering_values.iter(),
0..n_branch
) {
// We consumed this branch, skip it
if idx == end_idx {
continue;
}
// Push the next element to the heap.
let elem = CustomElement::new(
branch_index,
values[branch_index][*idx].clone(),
ordering[*idx].to_vec(),
sort_options,
);
heap.push(elem);
}
// Now we have filled the heap, get the largest entry (this will be the next element in merge)
if let Some(min_elem) = heap.pop() {
min_elem
} else {
// Heap is empty, this means that all indices are same with end_indices. e.g
// We have consumed all of the branches. Merging is completed
// Exit from the loop
break;
}
};
let branch_idx = min_elem.branch_idx;
// Increment the index of merged branch,
indices[branch_idx] += 1;
let row_idx = indices[branch_idx];
merged_values.push(min_elem.value.clone());
merged_orderings.push(min_elem.ordering.clone());
if row_idx < end_indices[branch_idx] {
// Push next entry in the most recently consumed branch to the heap
// If there is an available entry
let value = values[branch_idx][row_idx].clone();
let ordering_row = ordering_values[branch_idx][row_idx].to_vec();
let elem = CustomElement::new(branch_idx, value, ordering_row, sort_options);
heap.push(elem);
}
}
Ok((merged_values, merged_orderings))
}
#[cfg(test)]
mod tests {
use crate::aggregate::array_agg_ordered::merge_ordered_arrays;
use arrow_array::{Array, ArrayRef, Int64Array};
use arrow_schema::SortOptions;
use datafusion_common::utils::get_row_at_idx;
use datafusion_common::{Result, ScalarValue};
use std::sync::Arc;
#[test]
fn test_merge_asc() -> Result<()> {
let lhs_arrays: Vec<ArrayRef> = vec![
Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2])),
Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])),
];
let n_row = lhs_arrays[0].len();
let lhs_orderings = (0..n_row)
.map(|idx| get_row_at_idx(&lhs_arrays, idx))
.collect::<Result<Vec<_>>>()?;
let rhs_arrays: Vec<ArrayRef> = vec![
Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2])),
Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])),
];
let n_row = rhs_arrays[0].len();
let rhs_orderings = (0..n_row)
.map(|idx| get_row_at_idx(&rhs_arrays, idx))
.collect::<Result<Vec<_>>>()?;
let sort_options = vec![
SortOptions {
descending: false,
nulls_first: false,
},
SortOptions {
descending: false,
nulls_first: false,
},
];
let lhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])) as ArrayRef;
let lhs_vals = (0..lhs_vals_arr.len())
.map(|idx| ScalarValue::try_from_array(&lhs_vals_arr, idx))
.collect::<Result<Vec<_>>>()?;
let rhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 3, 4])) as ArrayRef;
let rhs_vals = (0..rhs_vals_arr.len())
.map(|idx| ScalarValue::try_from_array(&rhs_vals_arr, idx))
.collect::<Result<Vec<_>>>()?;
let expected =
Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) as ArrayRef;
let expected_ts = vec![
Arc::new(Int64Array::from(vec![0, 0, 0, 0, 1, 1, 1, 1, 2, 2])) as ArrayRef,
Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 3, 3, 4, 4])) as ArrayRef,
];
let (merged_vals, merged_ts) = merge_ordered_arrays(
&[lhs_vals, rhs_vals],
&[lhs_orderings, rhs_orderings],
&sort_options,
)?;
let merged_vals = ScalarValue::iter_to_array(merged_vals.into_iter())?;
let merged_ts = (0..merged_ts[0].len())
.map(|col_idx| {
ScalarValue::iter_to_array(
(0..merged_ts.len())
.map(|row_idx| merged_ts[row_idx][col_idx].clone()),
)
})
.collect::<Result<Vec<_>>>()?;
assert_eq!(&merged_vals, &expected);
assert_eq!(&merged_ts, &expected_ts);
Ok(())
}
#[test]
fn test_merge_desc() -> Result<()> {
let lhs_arrays: Vec<ArrayRef> = vec![
Arc::new(Int64Array::from(vec![2, 1, 1, 0, 0])),
Arc::new(Int64Array::from(vec![4, 3, 2, 1, 0])),
];
let n_row = lhs_arrays[0].len();
let lhs_orderings = (0..n_row)
.map(|idx| get_row_at_idx(&lhs_arrays, idx))
.collect::<Result<Vec<_>>>()?;
let rhs_arrays: Vec<ArrayRef> = vec![
Arc::new(Int64Array::from(vec![2, 1, 1, 0, 0])),
Arc::new(Int64Array::from(vec![4, 3, 2, 1, 0])),
];
let n_row = rhs_arrays[0].len();
let rhs_orderings = (0..n_row)
.map(|idx| get_row_at_idx(&rhs_arrays, idx))
.collect::<Result<Vec<_>>>()?;
let sort_options = vec![
SortOptions {
descending: true,
nulls_first: false,
},
SortOptions {
descending: true,
nulls_first: false,
},
];
// Values (which will be merged) doesn't have to be ordered.
let lhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 1, 2])) as ArrayRef;
let lhs_vals = (0..lhs_vals_arr.len())
.map(|idx| ScalarValue::try_from_array(&lhs_vals_arr, idx))
.collect::<Result<Vec<_>>>()?;
let rhs_vals_arr = Arc::new(Int64Array::from(vec![0, 1, 2, 1, 2])) as ArrayRef;
let rhs_vals = (0..rhs_vals_arr.len())
.map(|idx| ScalarValue::try_from_array(&rhs_vals_arr, idx))
.collect::<Result<Vec<_>>>()?;
let expected =
Arc::new(Int64Array::from(vec![0, 0, 1, 1, 2, 2, 1, 1, 2, 2])) as ArrayRef;
let expected_ts = vec![
Arc::new(Int64Array::from(vec![2, 2, 1, 1, 1, 1, 0, 0, 0, 0])) as ArrayRef,
Arc::new(Int64Array::from(vec![4, 4, 3, 3, 2, 2, 1, 1, 0, 0])) as ArrayRef,
];
let (merged_vals, merged_ts) = merge_ordered_arrays(
&[lhs_vals, rhs_vals],
&[lhs_orderings, rhs_orderings],
&sort_options,
)?;
let merged_vals = ScalarValue::iter_to_array(merged_vals.into_iter())?;
let merged_ts = (0..merged_ts[0].len())
.map(|col_idx| {
ScalarValue::iter_to_array(
(0..merged_ts.len())
.map(|row_idx| merged_ts[row_idx][col_idx].clone()),
)
})
.collect::<Result<Vec<_>>>()?;
assert_eq!(&merged_vals, &expected);
assert_eq!(&merged_ts, &expected_ts);
Ok(())
}
}