use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::{Array, ArrayRef};
use arrow::datatypes::{DataType, Field};
use arrow_array::cast::AsArray;
use arrow_array::{downcast_integer, ArrowNativeTypeOp, ArrowNumericType};
use arrow_buffer::ArrowNativeType;
use datafusion_common::{DataFusionError, Result, ScalarValue};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::fmt::Formatter;
use std::sync::Arc;
#[derive(Debug)]
pub struct Median {
name: String,
expr: Arc<dyn PhysicalExpr>,
data_type: DataType,
}
impl Median {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
) -> Self {
Self {
name: name.into(),
expr,
data_type,
}
}
}
impl AggregateExpr for Median {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
use arrow_array::types::*;
macro_rules! helper {
($t:ty, $dt:expr) => {
Ok(Box::new(MedianAccumulator::<$t> {
data_type: $dt.clone(),
all_values: vec![],
}))
};
}
let dt = &self.data_type;
downcast_integer! {
dt => (helper, dt),
DataType::Float16 => helper!(Float16Type, dt),
DataType::Float32 => helper!(Float32Type, dt),
DataType::Float64 => helper!(Float64Type, dt),
DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
_ => Err(DataFusionError::NotImplemented(format!(
"MedianAccumulator not supported for {} with {}",
self.name(),
self.data_type
))),
}
}
fn state_fields(&self) -> Result<Vec<Field>> {
let field = Field::new("item", self.data_type.clone(), true);
let data_type = DataType::List(Arc::new(field));
Ok(vec![Field::new(
format_state_name(&self.name, "median"),
data_type,
true,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
}
impl PartialEq<dyn Any> for Median {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
struct MedianAccumulator<T: ArrowNumericType> {
data_type: DataType,
all_values: Vec<T::Native>,
}
impl<T: ArrowNumericType> std::fmt::Debug for MedianAccumulator<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "MedianAccumulator({})", self.data_type)
}
}
impl<T: ArrowNumericType> Accumulator for MedianAccumulator<T> {
fn state(&self) -> Result<Vec<ScalarValue>> {
let all_values = self
.all_values
.iter()
.map(|x| ScalarValue::new_primitive::<T>(Some(*x), &self.data_type))
.collect();
let state = ScalarValue::new_list(Some(all_values), self.data_type.clone());
Ok(vec![state])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = values[0].as_primitive::<T>();
self.all_values.reserve(values.len() - values.null_count());
self.all_values.extend(values.iter().flatten());
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let array = states[0].as_list::<i32>();
for v in array.iter().flatten() {
self.update_batch(&[v])?
}
Ok(())
}
fn evaluate(&self) -> Result<ScalarValue> {
let mut d = self.all_values.clone();
let cmp = |x: &T::Native, y: &T::Native| x.compare(*y);
let len = d.len();
let median = if len == 0 {
None
} else if len % 2 == 0 {
let (low, high, _) = d.select_nth_unstable_by(len / 2, cmp);
let (_, low, _) = low.select_nth_unstable_by(low.len() - 1, cmp);
let median = low.add_wrapping(*high).div_wrapping(T::Native::usize_as(2));
Some(median)
} else {
let (_, median, _) = d.select_nth_unstable_by(len / 2, cmp);
Some(*median)
};
Ok(ScalarValue::new_primitive::<T>(median, &self.data_type))
}
fn size(&self) -> usize {
std::mem::size_of_val(self)
+ self.all_values.capacity() * std::mem::size_of::<T::Native>()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use crate::generic_test_op;
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
#[test]
fn median_decimal() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..7)
.map(Some)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 4)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 4),
Median,
ScalarValue::Decimal128(Some(3), 10, 4)
)
}
#[test]
fn median_decimal_with_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
(1..6)
.map(|i| if i == 2 { None } else { Some(i) })
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 4)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 4),
Median,
ScalarValue::Decimal128(Some(3), 10, 4)
)
}
#[test]
fn median_decimal_all_nulls() -> Result<()> {
let array: ArrayRef = Arc::new(
std::iter::repeat::<Option<i128>>(None)
.take(6)
.collect::<Decimal128Array>()
.with_precision_and_scale(10, 4)?,
);
generic_test_op!(
array,
DataType::Decimal128(10, 4),
Median,
ScalarValue::Decimal128(None, 10, 4)
)
}
#[test]
fn median_i32_odd() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));
generic_test_op!(a, DataType::Int32, Median, ScalarValue::from(3_i32))
}
#[test]
fn median_i32_even() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5, 6]));
generic_test_op!(a, DataType::Int32, Median, ScalarValue::from(3_i32))
}
#[test]
fn median_i32_with_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![
Some(1),
None,
Some(3),
Some(4),
Some(5),
]));
generic_test_op!(a, DataType::Int32, Median, ScalarValue::from(3i32))
}
#[test]
fn median_i32_all_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
generic_test_op!(a, DataType::Int32, Median, ScalarValue::Int32(None))
}
#[test]
fn median_u32_odd() -> Result<()> {
let a: ArrayRef =
Arc::new(UInt32Array::from(vec![1_u32, 2_u32, 3_u32, 4_u32, 5_u32]));
generic_test_op!(a, DataType::UInt32, Median, ScalarValue::from(3u32))
}
#[test]
fn median_u32_even() -> Result<()> {
let a: ArrayRef = Arc::new(UInt32Array::from(vec![
1_u32, 2_u32, 3_u32, 4_u32, 5_u32, 6_u32,
]));
generic_test_op!(a, DataType::UInt32, Median, ScalarValue::from(3u32))
}
#[test]
fn median_f32_odd() -> Result<()> {
let a: ArrayRef =
Arc::new(Float32Array::from(vec![1_f32, 2_f32, 3_f32, 4_f32, 5_f32]));
generic_test_op!(a, DataType::Float32, Median, ScalarValue::from(3_f32))
}
#[test]
fn median_f32_even() -> Result<()> {
let a: ArrayRef = Arc::new(Float32Array::from(vec![
1_f32, 2_f32, 3_f32, 4_f32, 5_f32, 6_f32,
]));
generic_test_op!(a, DataType::Float32, Median, ScalarValue::from(3.5_f32))
}
#[test]
fn median_f64_odd() -> Result<()> {
let a: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 2_f64, 3_f64, 4_f64, 5_f64]));
generic_test_op!(a, DataType::Float64, Median, ScalarValue::from(3_f64))
}
#[test]
fn median_f64_even() -> Result<()> {
let a: ArrayRef = Arc::new(Float64Array::from(vec![
1_f64, 2_f64, 3_f64, 4_f64, 5_f64, 6_f64,
]));
generic_test_op!(a, DataType::Float64, Median, ScalarValue::from(3.5_f64))
}
}