1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// The implementation is taken from https://github.com/spebern/moving_min_max/blob/master/src/lib.rs.
//! Keep track of the minimum or maximum value in a sliding window.
//!
//! `moving min max` provides one data structure for keeping track of the
//! minimum value and one for keeping track of the maximum value in a sliding
//! window.
//!
//! Each element is stored with the current min/max. One stack to push and another one for pop. If pop stack is empty,
//! push to this stack all elements popped from first stack while updating their current min/max. Now pop from
//! the second stack (MovingMin/Max struct works as a queue). To find the minimum element of the queue,
//! look at the smallest/largest two elements of the individual stacks, then take the minimum of those two values.
//!
//! The complexity of the operations are
//! - O(1) for getting the minimum/maximum
//! - O(1) for push
//! - amortized O(1) for pop
/// ```
/// # use datafusion_physical_expr::aggregate::moving_min_max::MovingMin;
/// let mut moving_min = MovingMin::<i32>::new();
/// moving_min.push(2);
/// moving_min.push(1);
/// moving_min.push(3);
///
/// assert_eq!(moving_min.min(), Some(&1));
/// assert_eq!(moving_min.pop(), Some(2));
///
/// assert_eq!(moving_min.min(), Some(&1));
/// assert_eq!(moving_min.pop(), Some(1));
///
/// assert_eq!(moving_min.min(), Some(&3));
/// assert_eq!(moving_min.pop(), Some(3));
///
/// assert_eq!(moving_min.min(), None);
/// assert_eq!(moving_min.pop(), None);
/// ```
#[derive(Debug)]
pub struct MovingMin<T> {
push_stack: Vec<(T, T)>,
pop_stack: Vec<(T, T)>,
}
impl<T: Clone + PartialOrd> Default for MovingMin<T> {
fn default() -> Self {
Self {
push_stack: Vec::new(),
pop_stack: Vec::new(),
}
}
}
impl<T: Clone + PartialOrd> MovingMin<T> {
/// Creates a new `MovingMin` to keep track of the minimum in a sliding
/// window.
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Creates a new `MovingMin` to keep track of the minimum in a sliding
/// window with `capacity` allocated slots.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self {
push_stack: Vec::with_capacity(capacity),
pop_stack: Vec::with_capacity(capacity),
}
}
/// Returns the minimum of the sliding window or `None` if the window is
/// empty.
#[inline]
pub fn min(&self) -> Option<&T> {
match (self.push_stack.last(), self.pop_stack.last()) {
(None, None) => None,
(Some((_, min)), None) => Some(min),
(None, Some((_, min))) => Some(min),
(Some((_, a)), Some((_, b))) => Some(if a < b { a } else { b }),
}
}
/// Pushes a new element into the sliding window.
#[inline]
pub fn push(&mut self, val: T) {
self.push_stack.push(match self.push_stack.last() {
Some((_, min)) => {
if val > *min {
(val, min.clone())
} else {
(val.clone(), val)
}
}
None => (val.clone(), val),
});
}
/// Removes and returns the last value of the sliding window.
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.pop_stack.is_empty() {
match self.push_stack.pop() {
Some((val, _)) => {
let mut last = (val.clone(), val);
self.pop_stack.push(last.clone());
while let Some((val, _)) = self.push_stack.pop() {
let min = if last.1 < val {
last.1.clone()
} else {
val.clone()
};
last = (val.clone(), min);
self.pop_stack.push(last.clone());
}
}
None => return None,
}
}
self.pop_stack.pop().map(|(val, _)| val)
}
/// Returns the number of elements stored in the sliding window.
#[inline]
pub fn len(&self) -> usize {
self.push_stack.len() + self.pop_stack.len()
}
/// Returns `true` if the moving window contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// ```
/// # use datafusion_physical_expr::aggregate::moving_min_max::MovingMax;
/// let mut moving_max = MovingMax::<i32>::new();
/// moving_max.push(2);
/// moving_max.push(3);
/// moving_max.push(1);
///
/// assert_eq!(moving_max.max(), Some(&3));
/// assert_eq!(moving_max.pop(), Some(2));
///
/// assert_eq!(moving_max.max(), Some(&3));
/// assert_eq!(moving_max.pop(), Some(3));
///
/// assert_eq!(moving_max.max(), Some(&1));
/// assert_eq!(moving_max.pop(), Some(1));
///
/// assert_eq!(moving_max.max(), None);
/// assert_eq!(moving_max.pop(), None);
/// ```
#[derive(Debug)]
pub struct MovingMax<T> {
push_stack: Vec<(T, T)>,
pop_stack: Vec<(T, T)>,
}
impl<T: Clone + PartialOrd> Default for MovingMax<T> {
fn default() -> Self {
Self {
push_stack: Vec::new(),
pop_stack: Vec::new(),
}
}
}
impl<T: Clone + PartialOrd> MovingMax<T> {
/// Creates a new `MovingMax` to keep track of the maximum in a sliding window.
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Creates a new `MovingMax` to keep track of the maximum in a sliding window with
/// `capacity` allocated slots.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self {
push_stack: Vec::with_capacity(capacity),
pop_stack: Vec::with_capacity(capacity),
}
}
/// Returns the maximum of the sliding window or `None` if the window is empty.
#[inline]
pub fn max(&self) -> Option<&T> {
match (self.push_stack.last(), self.pop_stack.last()) {
(None, None) => None,
(Some((_, max)), None) => Some(max),
(None, Some((_, max))) => Some(max),
(Some((_, a)), Some((_, b))) => Some(if a > b { a } else { b }),
}
}
/// Pushes a new element into the sliding window.
#[inline]
pub fn push(&mut self, val: T) {
self.push_stack.push(match self.push_stack.last() {
Some((_, max)) => {
if val < *max {
(val, max.clone())
} else {
(val.clone(), val)
}
}
None => (val.clone(), val),
});
}
/// Removes and returns the last value of the sliding window.
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.pop_stack.is_empty() {
match self.push_stack.pop() {
Some((val, _)) => {
let mut last = (val.clone(), val);
self.pop_stack.push(last.clone());
while let Some((val, _)) = self.push_stack.pop() {
let max = if last.1 > val {
last.1.clone()
} else {
val.clone()
};
last = (val.clone(), max);
self.pop_stack.push(last.clone());
}
}
None => return None,
}
}
self.pop_stack.pop().map(|(val, _)| val)
}
/// Returns the number of elements stored in the sliding window.
#[inline]
pub fn len(&self) -> usize {
self.push_stack.len() + self.pop_stack.len()
}
/// Returns `true` if the moving window contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
#[cfg(test)]
mod tests {
use super::*;
use datafusion_common::Result;
use rand::Rng;
fn get_random_vec_i32(len: usize) -> Vec<i32> {
let mut rng = rand::thread_rng();
let mut input = Vec::with_capacity(len);
for _i in 0..len {
input.push(rng.gen_range(0..100));
}
input
}
fn moving_min_i32(len: usize, n_sliding_window: usize) -> Result<()> {
let data = get_random_vec_i32(len);
let mut expected = Vec::with_capacity(len);
let mut moving_min = MovingMin::<i32>::new();
let mut res = Vec::with_capacity(len);
for i in 0..len {
let start = i.saturating_sub(n_sliding_window);
expected.push(*data[start..i + 1].iter().min().unwrap());
moving_min.push(data[i]);
if i > n_sliding_window {
moving_min.pop();
}
res.push(*moving_min.min().unwrap());
}
assert_eq!(res, expected);
Ok(())
}
fn moving_max_i32(len: usize, n_sliding_window: usize) -> Result<()> {
let data = get_random_vec_i32(len);
let mut expected = Vec::with_capacity(len);
let mut moving_max = MovingMax::<i32>::new();
let mut res = Vec::with_capacity(len);
for i in 0..len {
let start = i.saturating_sub(n_sliding_window);
expected.push(*data[start..i + 1].iter().max().unwrap());
moving_max.push(data[i]);
if i > n_sliding_window {
moving_max.pop();
}
res.push(*moving_max.max().unwrap());
}
assert_eq!(res, expected);
Ok(())
}
#[test]
fn moving_min_tests() -> Result<()> {
moving_min_i32(100, 10)?;
moving_min_i32(100, 20)?;
moving_min_i32(100, 50)?;
moving_min_i32(100, 100)?;
Ok(())
}
#[test]
fn moving_max_tests() -> Result<()> {
moving_max_i32(100, 10)?;
moving_max_i32(100, 20)?;
moving_max_i32(100, 50)?;
moving_max_i32(100, 100)?;
Ok(())
}
}