use crate::expressions::format_state_name;
use arrow::datatypes::{DataType, Field};
use std::any::Any;
use std::sync::Arc;
use ahash::RandomState;
use arrow::array::{Array, ArrayRef};
use arrow_array::cast::AsArray;
use arrow_array::types::*;
use arrow_array::{ArrowNativeTypeOp, ArrowPrimitiveType};
use arrow_buffer::{ArrowNativeType, ToByteSlice};
use std::collections::HashSet;
use crate::aggregate::sum::downcast_sum;
use crate::aggregate::utils::down_cast_any_ref;
use crate::{AggregateExpr, PhysicalExpr};
use datafusion_common::{not_impl_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::type_coercion::aggregates::sum_return_type;
use datafusion_expr::Accumulator;
#[derive(Debug)]
pub struct DistinctSum {
name: String,
data_type: DataType,
exprs: Vec<Arc<dyn PhysicalExpr>>,
}
impl DistinctSum {
pub fn new(
exprs: Vec<Arc<dyn PhysicalExpr>>,
name: String,
data_type: DataType,
) -> Self {
let data_type = sum_return_type(&data_type).unwrap();
Self {
name,
data_type,
exprs,
}
}
}
impl AggregateExpr for DistinctSum {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new_list(
format_state_name(&self.name, "sum distinct"),
Field::new("item", self.data_type.clone(), true),
false,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.exprs.clone()
}
fn name(&self) -> &str {
&self.name
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
macro_rules! helper {
($t:ty, $dt:expr) => {
Ok(Box::new(DistinctSumAccumulator::<$t>::try_new(&$dt)?))
};
}
downcast_sum!(self, helper)
}
}
impl PartialEq<dyn Any> for DistinctSum {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.exprs.len() == x.exprs.len()
&& self
.exprs
.iter()
.zip(x.exprs.iter())
.all(|(this, other)| this.eq(other))
})
.unwrap_or(false)
}
}
#[derive(Copy, Clone)]
struct Hashable<T>(T);
impl<T: ToByteSlice> std::hash::Hash for Hashable<T> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.to_byte_slice().hash(state)
}
}
impl<T: ArrowNativeTypeOp> PartialEq for Hashable<T> {
fn eq(&self, other: &Self) -> bool {
self.0.is_eq(other.0)
}
}
impl<T: ArrowNativeTypeOp> Eq for Hashable<T> {}
struct DistinctSumAccumulator<T: ArrowPrimitiveType> {
values: HashSet<Hashable<T::Native>, RandomState>,
data_type: DataType,
}
impl<T: ArrowPrimitiveType> std::fmt::Debug for DistinctSumAccumulator<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "DistinctSumAccumulator({})", self.data_type)
}
}
impl<T: ArrowPrimitiveType> DistinctSumAccumulator<T> {
pub fn try_new(data_type: &DataType) -> Result<Self> {
Ok(Self {
values: HashSet::default(),
data_type: data_type.clone(),
})
}
}
impl<T: ArrowPrimitiveType> Accumulator for DistinctSumAccumulator<T> {
fn state(&self) -> Result<Vec<ScalarValue>> {
let state_out = {
let mut distinct_values = Vec::new();
self.values.iter().for_each(|distinct_value| {
distinct_values.push(ScalarValue::new_primitive::<T>(
Some(distinct_value.0),
&self.data_type,
))
});
vec![ScalarValue::new_list(
Some(distinct_values),
self.data_type.clone(),
)]
};
Ok(state_out)
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
let array = values[0].as_primitive::<T>();
match array.nulls().filter(|x| x.null_count() > 0) {
Some(n) => {
for idx in n.valid_indices() {
self.values.insert(Hashable(array.value(idx)));
}
}
None => array.values().iter().for_each(|x| {
self.values.insert(Hashable(*x));
}),
}
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
for x in states[0].as_list::<i32>().iter().flatten() {
self.update_batch(&[x])?
}
Ok(())
}
fn evaluate(&self) -> Result<ScalarValue> {
let mut acc = T::Native::usize_as(0);
for distinct_value in self.values.iter() {
acc = acc.add_wrapping(distinct_value.0)
}
let v = (!self.values.is_empty()).then_some(acc);
Ok(ScalarValue::new_primitive::<T>(v, &self.data_type))
}
fn size(&self) -> usize {
std::mem::size_of_val(self)
+ self.values.capacity() * std::mem::size_of::<T::Native>()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::tests::assert_aggregate;
use arrow::array::*;
use datafusion_common::Result;
use datafusion_expr::AggregateFunction;
fn run_update_batch(
return_type: DataType,
arrays: &[ArrayRef],
) -> Result<(Vec<ScalarValue>, ScalarValue)> {
let agg = DistinctSum::new(vec![], String::from("__col_name__"), return_type);
let mut accum = agg.create_accumulator()?;
accum.update_batch(arrays)?;
Ok((accum.state()?, accum.evaluate()?))
}
#[test]
fn sum_distinct_update_batch() -> Result<()> {
let array_int64: ArrayRef = Arc::new(Int64Array::from(vec![1, 1, 3]));
let arrays = vec![array_int64];
let (states, result) = run_update_batch(DataType::Int64, &arrays)?;
assert_eq!(states.len(), 1);
assert_eq!(result, ScalarValue::Int64(Some(4)));
Ok(())
}
#[test]
fn sum_distinct_i32_with_nulls() {
let array = Arc::new(Int32Array::from(vec![
Some(1),
Some(1),
None,
Some(2),
Some(2),
Some(3),
]));
assert_aggregate(array, AggregateFunction::Sum, true, 6_i64.into());
}
#[test]
fn sum_distinct_u32_with_nulls() {
let array: ArrayRef = Arc::new(UInt32Array::from(vec![
Some(1_u32),
Some(1_u32),
Some(3_u32),
Some(3_u32),
None,
]));
assert_aggregate(array, AggregateFunction::Sum, true, 4_u64.into());
}
#[test]
fn sum_distinct_f64() {
let array: ArrayRef =
Arc::new(Float64Array::from(vec![1_f64, 1_f64, 3_f64, 3_f64, 3_f64]));
assert_aggregate(array, AggregateFunction::Sum, true, 4_f64.into());
}
#[test]
fn sum_distinct_decimal_with_nulls() {
let array: ArrayRef = Arc::new(
(1..6)
.map(|i| if i == 2 { None } else { Some(i % 2) })
.collect::<Decimal128Array>()
.with_precision_and_scale(35, 0)
.unwrap(),
);
assert_aggregate(
array,
AggregateFunction::Sum,
true,
ScalarValue::Decimal128(Some(1), 38, 0),
);
}
}