1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utilities used in aggregates

use crate::{AggregateExpr, PhysicalSortExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{MAX_DECIMAL_FOR_EACH_PRECISION, MIN_DECIMAL_FOR_EACH_PRECISION};
use arrow_schema::{DataType, Field};
use datafusion_common::{exec_err, DataFusionError, Result};
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;

/// Convert scalar values from an accumulator into arrays.
pub fn get_accum_scalar_values_as_arrays(
    accum: &dyn Accumulator,
) -> Result<Vec<ArrayRef>> {
    Ok(accum
        .state()?
        .iter()
        .map(|s| s.to_array_of_size(1))
        .collect::<Vec<_>>())
}

/// Computes averages for `Decimal128` values, checking for overflow
///
/// This is needed because different precisions for Decimal128 can
/// store different ranges of values and thus sum/count may not fit in
/// the target type.
///
/// For example, the precision is 3, the max of value is `999` and the min
/// value is `-999`
pub(crate) struct Decimal128Averager {
    /// scale factor for sum values (10^sum_scale)
    sum_mul: i128,
    /// scale factor for target (10^target_scale)
    target_mul: i128,
    /// The minimum output value possible to represent with the target precision
    target_min: i128,
    /// The maximum output value possible to represent with the target precision
    target_max: i128,
}

impl Decimal128Averager {
    /// Create a new `Decimal128Averager`:
    ///
    /// * sum_scale: the scale of `sum` values passed to [`Self::avg`]
    /// * target_precision: the output precision
    /// * target_scale: the output scale
    ///
    /// Errors if the resulting data can not be stored
    pub fn try_new(
        sum_scale: i8,
        target_precision: u8,
        target_scale: i8,
    ) -> Result<Self> {
        let sum_mul = 10_i128.pow(sum_scale as u32);
        let target_mul = 10_i128.pow(target_scale as u32);
        let target_min = MIN_DECIMAL_FOR_EACH_PRECISION[target_precision as usize - 1];
        let target_max = MAX_DECIMAL_FOR_EACH_PRECISION[target_precision as usize - 1];

        if target_mul >= sum_mul {
            Ok(Self {
                sum_mul,
                target_mul,
                target_min,
                target_max,
            })
        } else {
            // can't convert the lit decimal to the returned data type
            exec_err!("Arithmetic Overflow in AvgAccumulator")
        }
    }

    /// Returns the `sum`/`count` as a i128 Decimal128 with
    /// target_scale and target_precision and reporting overflow.
    ///
    /// * sum: The total sum value stored as Decimal128 with sum_scale
    /// (passed to `Self::try_new`)
    /// * count: total count, stored as a i128 (*NOT* a Decimal128 value)
    #[inline(always)]
    pub fn avg(&self, sum: i128, count: i128) -> Result<i128> {
        if let Some(value) = sum.checked_mul(self.target_mul / self.sum_mul) {
            let new_value = value / count;
            if new_value >= self.target_min && new_value <= self.target_max {
                Ok(new_value)
            } else {
                exec_err!("Arithmetic Overflow in AvgAccumulator")
            }
        } else {
            // can't convert the lit decimal to the returned data type
            exec_err!("Arithmetic Overflow in AvgAccumulator")
        }
    }
}

/// Downcast a `Box<dyn AggregateExpr>` or `Arc<dyn AggregateExpr>`
/// and return the inner trait object as [`Any`](std::any::Any) so
/// that it can be downcast to a specific implementation.
///
/// This method is used when implementing the `PartialEq<dyn Any>`
/// for [`AggregateExpr`] aggregation expressions and allows comparing the equality
/// between the trait objects.
pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
    if any.is::<Arc<dyn AggregateExpr>>() {
        any.downcast_ref::<Arc<dyn AggregateExpr>>()
            .unwrap()
            .as_any()
    } else if any.is::<Box<dyn AggregateExpr>>() {
        any.downcast_ref::<Box<dyn AggregateExpr>>()
            .unwrap()
            .as_any()
    } else {
        any
    }
}

/// Construct corresponding fields for lexicographical ordering requirement expression
pub(crate) fn ordering_fields(
    ordering_req: &[PhysicalSortExpr],
    // Data type of each expression in the ordering requirement
    data_types: &[DataType],
) -> Vec<Field> {
    ordering_req
        .iter()
        .zip(data_types.iter())
        .map(|(expr, dtype)| {
            Field::new(
                expr.to_string().as_str(),
                dtype.clone(),
                // Multi partitions may be empty hence field should be nullable.
                true,
            )
        })
        .collect()
}