1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::sync::Arc;

use crate::intervals::Interval;
use crate::physical_expr::down_cast_any_ref;
use crate::sort_properties::SortProperties;
use crate::PhysicalExpr;

use arrow::compute;
use arrow::compute::{kernels, CastOptions};
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use compute::can_cast_types;
use datafusion_common::format::DEFAULT_FORMAT_OPTIONS;
use datafusion_common::{not_impl_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::ColumnarValue;

const DEFAULT_CAST_OPTIONS: CastOptions<'static> = CastOptions {
    safe: false,
    format_options: DEFAULT_FORMAT_OPTIONS,
};

/// CAST expression casts an expression to a specific data type and returns a runtime error on invalid cast
#[derive(Debug, Clone)]
pub struct CastExpr {
    /// The expression to cast
    expr: Arc<dyn PhysicalExpr>,
    /// The data type to cast to
    cast_type: DataType,
    /// Cast options
    cast_options: CastOptions<'static>,
}

impl CastExpr {
    /// Create a new CastExpr
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        cast_type: DataType,
        cast_options: Option<CastOptions<'static>>,
    ) -> Self {
        Self {
            expr,
            cast_type,
            cast_options: cast_options.unwrap_or(DEFAULT_CAST_OPTIONS),
        }
    }

    /// The expression to cast
    pub fn expr(&self) -> &Arc<dyn PhysicalExpr> {
        &self.expr
    }

    /// The data type to cast to
    pub fn cast_type(&self) -> &DataType {
        &self.cast_type
    }
}

impl fmt::Display for CastExpr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "CAST({} AS {:?})", self.expr, self.cast_type)
    }
}

impl PhysicalExpr for CastExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
        Ok(self.cast_type.clone())
    }

    fn nullable(&self, input_schema: &Schema) -> Result<bool> {
        self.expr.nullable(input_schema)
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        let value = self.expr.evaluate(batch)?;
        cast_column(&value, &self.cast_type, Some(&self.cast_options))
    }

    fn children(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(Arc::new(CastExpr::new(
            children[0].clone(),
            self.cast_type.clone(),
            Some(self.cast_options.clone()),
        )))
    }

    fn evaluate_bounds(&self, children: &[&Interval]) -> Result<Interval> {
        // Cast current node's interval to the right type:
        children[0].cast_to(&self.cast_type, &self.cast_options)
    }

    fn propagate_constraints(
        &self,
        interval: &Interval,
        children: &[&Interval],
    ) -> Result<Vec<Option<Interval>>> {
        let child_interval = children[0];
        // Get child's datatype:
        let cast_type = child_interval.get_datatype()?;
        Ok(vec![Some(
            interval.cast_to(&cast_type, &self.cast_options)?,
        )])
    }

    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.expr.hash(&mut s);
        self.cast_type.hash(&mut s);
        // Add `self.cast_options` when hash is available
        // https://github.com/apache/arrow-rs/pull/4395
    }

    /// A [`CastExpr`] preserves the ordering of its child.
    fn get_ordering(&self, children: &[SortProperties]) -> SortProperties {
        children[0]
    }
}

impl PartialEq<dyn Any> for CastExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.expr.eq(&x.expr)
                    && self.cast_type == x.cast_type
                    // TODO: Use https://github.com/apache/arrow-rs/issues/2966 when available
                    && self.cast_options.safe == x.cast_options.safe
            })
            .unwrap_or(false)
    }
}

/// Internal cast function for casting ColumnarValue -> ColumnarValue for cast_type
pub fn cast_column(
    value: &ColumnarValue,
    cast_type: &DataType,
    cast_options: Option<&CastOptions<'static>>,
) -> Result<ColumnarValue> {
    let cast_options = cast_options.cloned().unwrap_or(DEFAULT_CAST_OPTIONS);
    match value {
        ColumnarValue::Array(array) => Ok(ColumnarValue::Array(
            kernels::cast::cast_with_options(array, cast_type, &cast_options)?,
        )),
        ColumnarValue::Scalar(scalar) => {
            let scalar_array = scalar.to_array();
            let cast_array = kernels::cast::cast_with_options(
                &scalar_array,
                cast_type,
                &cast_options,
            )?;
            let cast_scalar = ScalarValue::try_from_array(&cast_array, 0)?;
            Ok(ColumnarValue::Scalar(cast_scalar))
        }
    }
}

/// Return a PhysicalExpression representing `expr` casted to
/// `cast_type`, if any casting is needed.
///
/// Note that such casts may lose type information
pub fn cast_with_options(
    expr: Arc<dyn PhysicalExpr>,
    input_schema: &Schema,
    cast_type: DataType,
    cast_options: Option<CastOptions<'static>>,
) -> Result<Arc<dyn PhysicalExpr>> {
    let expr_type = expr.data_type(input_schema)?;
    if expr_type == cast_type {
        Ok(expr.clone())
    } else if can_cast_types(&expr_type, &cast_type) {
        Ok(Arc::new(CastExpr::new(expr, cast_type, cast_options)))
    } else {
        not_impl_err!("Unsupported CAST from {expr_type:?} to {cast_type:?}")
    }
}

/// Return a PhysicalExpression representing `expr` casted to
/// `cast_type`, if any casting is needed.
///
/// Note that such casts may lose type information
pub fn cast(
    expr: Arc<dyn PhysicalExpr>,
    input_schema: &Schema,
    cast_type: DataType,
) -> Result<Arc<dyn PhysicalExpr>> {
    cast_with_options(expr, input_schema, cast_type, None)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::expressions::col;
    use arrow::{
        array::{
            Array, Decimal128Array, Float32Array, Float64Array, Int16Array, Int32Array,
            Int64Array, Int8Array, StringArray, Time64NanosecondArray,
            TimestampNanosecondArray, UInt32Array,
        },
        datatypes::*,
    };
    use datafusion_common::Result;

    // runs an end-to-end test of physical type cast
    // 1. construct a record batch with a column "a" of type A
    // 2. construct a physical expression of CAST(a AS B)
    // 3. evaluate the expression
    // 4. verify that the resulting expression is of type B
    // 5. verify that the resulting values are downcastable and correct
    macro_rules! generic_decimal_to_other_test_cast {
        ($DECIMAL_ARRAY:ident, $A_TYPE:expr, $TYPEARRAY:ident, $TYPE:expr, $VEC:expr,$CAST_OPTIONS:expr) => {{
            let schema = Schema::new(vec![Field::new("a", $A_TYPE, true)]);
            let batch = RecordBatch::try_new(
                Arc::new(schema.clone()),
                vec![Arc::new($DECIMAL_ARRAY)],
            )?;
            // verify that we can construct the expression
            let expression =
                cast_with_options(col("a", &schema)?, &schema, $TYPE, $CAST_OPTIONS)?;

            // verify that its display is correct
            assert_eq!(
                format!("CAST(a@0 AS {:?})", $TYPE),
                format!("{}", expression)
            );

            // verify that the expression's type is correct
            assert_eq!(expression.data_type(&schema)?, $TYPE);

            // compute
            let result = expression.evaluate(&batch)?.into_array(batch.num_rows());

            // verify that the array's data_type is correct
            assert_eq!(*result.data_type(), $TYPE);

            // verify that the data itself is downcastable
            let result = result
                .as_any()
                .downcast_ref::<$TYPEARRAY>()
                .expect("failed to downcast");

            // verify that the result itself is correct
            for (i, x) in $VEC.iter().enumerate() {
                match x {
                    Some(x) => assert_eq!(result.value(i), *x),
                    None => assert!(!result.is_valid(i)),
                }
            }
        }};
    }

    // runs an end-to-end test of physical type cast
    // 1. construct a record batch with a column "a" of type A
    // 2. construct a physical expression of CAST(a AS B)
    // 3. evaluate the expression
    // 4. verify that the resulting expression is of type B
    // 5. verify that the resulting values are downcastable and correct
    macro_rules! generic_test_cast {
        ($A_ARRAY:ident, $A_TYPE:expr, $A_VEC:expr, $TYPEARRAY:ident, $TYPE:expr, $VEC:expr, $CAST_OPTIONS:expr) => {{
            let schema = Schema::new(vec![Field::new("a", $A_TYPE, true)]);
            let a_vec_len = $A_VEC.len();
            let a = $A_ARRAY::from($A_VEC);
            let batch =
                RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(a)])?;

            // verify that we can construct the expression
            let expression =
                cast_with_options(col("a", &schema)?, &schema, $TYPE, $CAST_OPTIONS)?;

            // verify that its display is correct
            assert_eq!(
                format!("CAST(a@0 AS {:?})", $TYPE),
                format!("{}", expression)
            );

            // verify that the expression's type is correct
            assert_eq!(expression.data_type(&schema)?, $TYPE);

            // compute
            let result = expression.evaluate(&batch)?.into_array(batch.num_rows());

            // verify that the array's data_type is correct
            assert_eq!(*result.data_type(), $TYPE);

            // verify that the len is correct
            assert_eq!(result.len(), a_vec_len);

            // verify that the data itself is downcastable
            let result = result
                .as_any()
                .downcast_ref::<$TYPEARRAY>()
                .expect("failed to downcast");

            // verify that the result itself is correct
            for (i, x) in $VEC.iter().enumerate() {
                match x {
                    Some(x) => assert_eq!(result.value(i), *x),
                    None => assert!(!result.is_valid(i)),
                }
            }
        }};
    }

    #[test]
    fn test_cast_decimal_to_decimal() -> Result<()> {
        let array = vec![
            Some(1234),
            Some(2222),
            Some(3),
            Some(4000),
            Some(5000),
            None,
        ];

        let decimal_array = array
            .clone()
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 3)?;

        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 3),
            Decimal128Array,
            DataType::Decimal128(20, 6),
            [
                Some(1_234_000),
                Some(2_222_000),
                Some(3_000),
                Some(4_000_000),
                Some(5_000_000),
                None
            ],
            None
        );

        let decimal_array = array
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 3)?;

        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 3),
            Decimal128Array,
            DataType::Decimal128(10, 2),
            [Some(123), Some(222), Some(0), Some(400), Some(500), None],
            None
        );

        Ok(())
    }

    #[test]
    fn test_cast_decimal_to_numeric() -> Result<()> {
        let array = vec![Some(1), Some(2), Some(3), Some(4), Some(5), None];
        // decimal to i8
        let decimal_array = array
            .clone()
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 0)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 0),
            Int8Array,
            DataType::Int8,
            [
                Some(1_i8),
                Some(2_i8),
                Some(3_i8),
                Some(4_i8),
                Some(5_i8),
                None
            ],
            None
        );

        // decimal to i16
        let decimal_array = array
            .clone()
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 0)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 0),
            Int16Array,
            DataType::Int16,
            [
                Some(1_i16),
                Some(2_i16),
                Some(3_i16),
                Some(4_i16),
                Some(5_i16),
                None
            ],
            None
        );

        // decimal to i32
        let decimal_array = array
            .clone()
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 0)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 0),
            Int32Array,
            DataType::Int32,
            [
                Some(1_i32),
                Some(2_i32),
                Some(3_i32),
                Some(4_i32),
                Some(5_i32),
                None
            ],
            None
        );

        // decimal to i64
        let decimal_array = array
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 0)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 0),
            Int64Array,
            DataType::Int64,
            [
                Some(1_i64),
                Some(2_i64),
                Some(3_i64),
                Some(4_i64),
                Some(5_i64),
                None
            ],
            None
        );

        // decimal to float32
        let array = vec![
            Some(1234),
            Some(2222),
            Some(3),
            Some(4000),
            Some(5000),
            None,
        ];
        let decimal_array = array
            .clone()
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(10, 3)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(10, 3),
            Float32Array,
            DataType::Float32,
            [
                Some(1.234_f32),
                Some(2.222_f32),
                Some(0.003_f32),
                Some(4.0_f32),
                Some(5.0_f32),
                None
            ],
            None
        );

        // decimal to float64
        let decimal_array = array
            .into_iter()
            .collect::<Decimal128Array>()
            .with_precision_and_scale(20, 6)?;
        generic_decimal_to_other_test_cast!(
            decimal_array,
            DataType::Decimal128(20, 6),
            Float64Array,
            DataType::Float64,
            [
                Some(0.001234_f64),
                Some(0.002222_f64),
                Some(0.000003_f64),
                Some(0.004_f64),
                Some(0.005_f64),
                None
            ],
            None
        );
        Ok(())
    }

    #[test]
    fn test_cast_numeric_to_decimal() -> Result<()> {
        // int8
        generic_test_cast!(
            Int8Array,
            DataType::Int8,
            vec![1, 2, 3, 4, 5],
            Decimal128Array,
            DataType::Decimal128(3, 0),
            [Some(1), Some(2), Some(3), Some(4), Some(5)],
            None
        );

        // int16
        generic_test_cast!(
            Int16Array,
            DataType::Int16,
            vec![1, 2, 3, 4, 5],
            Decimal128Array,
            DataType::Decimal128(5, 0),
            [Some(1), Some(2), Some(3), Some(4), Some(5)],
            None
        );

        // int32
        generic_test_cast!(
            Int32Array,
            DataType::Int32,
            vec![1, 2, 3, 4, 5],
            Decimal128Array,
            DataType::Decimal128(10, 0),
            [Some(1), Some(2), Some(3), Some(4), Some(5)],
            None
        );

        // int64
        generic_test_cast!(
            Int64Array,
            DataType::Int64,
            vec![1, 2, 3, 4, 5],
            Decimal128Array,
            DataType::Decimal128(20, 0),
            [Some(1), Some(2), Some(3), Some(4), Some(5)],
            None
        );

        // int64 to different scale
        generic_test_cast!(
            Int64Array,
            DataType::Int64,
            vec![1, 2, 3, 4, 5],
            Decimal128Array,
            DataType::Decimal128(20, 2),
            [Some(100), Some(200), Some(300), Some(400), Some(500)],
            None
        );

        // float32
        generic_test_cast!(
            Float32Array,
            DataType::Float32,
            vec![1.5, 2.5, 3.0, 1.123_456_8, 5.50],
            Decimal128Array,
            DataType::Decimal128(10, 2),
            [Some(150), Some(250), Some(300), Some(112), Some(550)],
            None
        );

        // float64
        generic_test_cast!(
            Float64Array,
            DataType::Float64,
            vec![1.5, 2.5, 3.0, 1.123_456_8, 5.50],
            Decimal128Array,
            DataType::Decimal128(20, 4),
            [
                Some(15000),
                Some(25000),
                Some(30000),
                Some(11235),
                Some(55000)
            ],
            None
        );
        Ok(())
    }

    #[test]
    fn test_cast_i32_u32() -> Result<()> {
        generic_test_cast!(
            Int32Array,
            DataType::Int32,
            vec![1, 2, 3, 4, 5],
            UInt32Array,
            DataType::UInt32,
            [
                Some(1_u32),
                Some(2_u32),
                Some(3_u32),
                Some(4_u32),
                Some(5_u32)
            ],
            None
        );
        Ok(())
    }

    #[test]
    fn test_cast_i32_utf8() -> Result<()> {
        generic_test_cast!(
            Int32Array,
            DataType::Int32,
            vec![1, 2, 3, 4, 5],
            StringArray,
            DataType::Utf8,
            [Some("1"), Some("2"), Some("3"), Some("4"), Some("5")],
            None
        );
        Ok(())
    }

    #[test]
    fn test_cast_i64_t64() -> Result<()> {
        let original = vec![1, 2, 3, 4, 5];
        let expected: Vec<Option<i64>> = original
            .iter()
            .map(|i| Some(Time64NanosecondArray::from(vec![*i]).value(0)))
            .collect();
        generic_test_cast!(
            Int64Array,
            DataType::Int64,
            original,
            TimestampNanosecondArray,
            DataType::Timestamp(TimeUnit::Nanosecond, None),
            expected,
            None
        );
        Ok(())
    }

    #[test]
    fn invalid_cast() {
        // Ensure a useful error happens at plan time if invalid casts are used
        let schema = Schema::new(vec![Field::new("a", DataType::Int32, false)]);

        let result = cast(col("a", &schema).unwrap(), &schema, DataType::LargeBinary);
        result.expect_err("expected Invalid CAST");
    }

    #[test]
    fn invalid_cast_with_options_error() -> Result<()> {
        // Ensure a useful error happens at plan time if invalid casts are used
        let schema = Schema::new(vec![Field::new("a", DataType::Utf8, false)]);
        let a = StringArray::from(vec!["9.1"]);
        let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(a)])?;
        let expression =
            cast_with_options(col("a", &schema)?, &schema, DataType::Int32, None)?;
        let result = expression.evaluate(&batch);

        match result {
            Ok(_) => panic!("expected error"),
            Err(e) => {
                assert!(e
                    .to_string()
                    .contains("Cannot cast string '9.1' to value of Int32 type"))
            }
        }
        Ok(())
    }

    #[test]
    #[ignore] // TODO: https://github.com/apache/arrow-datafusion/issues/5396
    fn test_cast_decimal() -> Result<()> {
        let schema = Schema::new(vec![Field::new("a", DataType::Int64, false)]);
        let a = Int64Array::from(vec![100]);
        let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(a)])?;
        let expression = cast_with_options(
            col("a", &schema)?,
            &schema,
            DataType::Decimal128(38, 38),
            None,
        )?;
        expression.evaluate(&batch)?;
        Ok(())
    }
}