1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Declaration of built-in (scalar) functions.
//! This module contains built-in functions' enumeration and metadata.
//!
//! Generally, a function has:
//! * a signature
//! * a return type, that is a function of the incoming argument's types
//! * the computation, that must accept each valid signature
//!
//! * Signature: see `Signature`
//! * Return type: a function `(arg_types) -> return_type`. E.g. for sqrt, ([f32]) -> f32, ([f64]) -> f64.
//!
//! This module also has a set of coercion rules to improve user experience: if an argument i32 is passed
//! to a function that supports f64, it is coerced to f64.
use crate::functions::out_ordering;
use crate::functions::FuncMonotonicity;
use crate::physical_expr::down_cast_any_ref;
use crate::sort_properties::SortProperties;
use crate::utils::expr_list_eq_strict_order;
use crate::PhysicalExpr;
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use datafusion_expr::expr_vec_fmt;
use datafusion_expr::BuiltinScalarFunction;
use datafusion_expr::ColumnarValue;
use datafusion_expr::ScalarFunctionImplementation;
use std::any::Any;
use std::fmt::Debug;
use std::fmt::{self, Formatter};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
/// Physical expression of a scalar function
pub struct ScalarFunctionExpr {
fun: ScalarFunctionImplementation,
name: String,
args: Vec<Arc<dyn PhysicalExpr>>,
return_type: DataType,
// Keeps monotonicity information of the function.
// FuncMonotonicity vector is one to one mapped to `args`,
// and it specifies the effect of an increase or decrease in
// the corresponding `arg` to the function value.
monotonicity: Option<FuncMonotonicity>,
}
impl Debug for ScalarFunctionExpr {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.debug_struct("ScalarFunctionExpr")
.field("fun", &"<FUNC>")
.field("name", &self.name)
.field("args", &self.args)
.field("return_type", &self.return_type)
.finish()
}
}
impl ScalarFunctionExpr {
/// Create a new Scalar function
pub fn new(
name: &str,
fun: ScalarFunctionImplementation,
args: Vec<Arc<dyn PhysicalExpr>>,
return_type: &DataType,
monotonicity: Option<FuncMonotonicity>,
) -> Self {
Self {
fun,
name: name.to_owned(),
args,
return_type: return_type.clone(),
monotonicity,
}
}
/// Get the scalar function implementation
pub fn fun(&self) -> &ScalarFunctionImplementation {
&self.fun
}
/// The name for this expression
pub fn name(&self) -> &str {
&self.name
}
/// Input arguments
pub fn args(&self) -> &[Arc<dyn PhysicalExpr>] {
&self.args
}
/// Data type produced by this expression
pub fn return_type(&self) -> &DataType {
&self.return_type
}
}
impl fmt::Display for ScalarFunctionExpr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}({})", self.name, expr_vec_fmt!(self.args))
}
}
impl PhysicalExpr for ScalarFunctionExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(self.return_type.clone())
}
fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
Ok(true)
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
// evaluate the arguments, if there are no arguments we'll instead pass in a null array
// indicating the batch size (as a convention)
let inputs = match (self.args.len(), self.name.parse::<BuiltinScalarFunction>()) {
// MakeArray support zero argument but has the different behavior from the array with one null.
(0, Ok(scalar_fun))
if scalar_fun.supports_zero_argument()
&& scalar_fun != BuiltinScalarFunction::MakeArray =>
{
vec![ColumnarValue::create_null_array(batch.num_rows())]
}
_ => self
.args
.iter()
.map(|e| e.evaluate(batch))
.collect::<Result<Vec<_>>>()?,
};
// evaluate the function
let fun = self.fun.as_ref();
(fun)(&inputs)
}
fn children(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.args.clone()
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
Ok(Arc::new(ScalarFunctionExpr::new(
&self.name,
self.fun.clone(),
children,
self.return_type(),
self.monotonicity.clone(),
)))
}
fn dyn_hash(&self, state: &mut dyn Hasher) {
let mut s = state;
self.name.hash(&mut s);
self.args.hash(&mut s);
self.return_type.hash(&mut s);
// Add `self.fun` when hash is available
}
fn get_ordering(&self, children: &[SortProperties]) -> SortProperties {
self.monotonicity
.as_ref()
.map(|monotonicity| out_ordering(monotonicity, children))
.unwrap_or(SortProperties::Unordered)
}
}
impl PartialEq<dyn Any> for ScalarFunctionExpr {
/// Comparing name, args and return_type
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& expr_list_eq_strict_order(&self.args, &x.args)
&& self.return_type == x.return_type
})
.unwrap_or(false)
}
}