1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expression for `lead` and `lag` that can evaluated
//! at runtime during query execution

use crate::window::BuiltInWindowFunctionExpr;
use crate::PhysicalExpr;
use arrow::array::ArrayRef;
use arrow::compute::cast;
use arrow::datatypes::{DataType, Field};
use datafusion_common::ScalarValue;
use datafusion_common::{internal_err, DataFusionError, Result};
use datafusion_expr::PartitionEvaluator;
use std::any::Any;
use std::cmp::min;
use std::ops::{Neg, Range};
use std::sync::Arc;

/// window shift expression
#[derive(Debug)]
pub struct WindowShift {
    name: String,
    data_type: DataType,
    shift_offset: i64,
    expr: Arc<dyn PhysicalExpr>,
    default_value: Option<ScalarValue>,
}

impl WindowShift {
    /// Get shift_offset of window shift expression
    pub fn get_shift_offset(&self) -> i64 {
        self.shift_offset
    }
}

/// lead() window function
pub fn lead(
    name: String,
    data_type: DataType,
    expr: Arc<dyn PhysicalExpr>,
    shift_offset: Option<i64>,
    default_value: Option<ScalarValue>,
) -> WindowShift {
    WindowShift {
        name,
        data_type,
        shift_offset: shift_offset.map(|v| v.neg()).unwrap_or(-1),
        expr,
        default_value,
    }
}

/// lag() window function
pub fn lag(
    name: String,
    data_type: DataType,
    expr: Arc<dyn PhysicalExpr>,
    shift_offset: Option<i64>,
    default_value: Option<ScalarValue>,
) -> WindowShift {
    WindowShift {
        name,
        data_type,
        shift_offset: shift_offset.unwrap_or(1),
        expr,
        default_value,
    }
}

impl BuiltInWindowFunctionExpr for WindowShift {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        let nullable = true;
        Ok(Field::new(&self.name, self.data_type.clone(), nullable))
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn create_evaluator(&self) -> Result<Box<dyn PartitionEvaluator>> {
        Ok(Box::new(WindowShiftEvaluator {
            shift_offset: self.shift_offset,
            default_value: self.default_value.clone(),
        }))
    }

    fn reverse_expr(&self) -> Option<Arc<dyn BuiltInWindowFunctionExpr>> {
        Some(Arc::new(Self {
            name: self.name.clone(),
            data_type: self.data_type.clone(),
            shift_offset: -self.shift_offset,
            expr: self.expr.clone(),
            default_value: self.default_value.clone(),
        }))
    }
}

#[derive(Debug)]
pub(crate) struct WindowShiftEvaluator {
    shift_offset: i64,
    default_value: Option<ScalarValue>,
}

fn create_empty_array(
    value: Option<&ScalarValue>,
    data_type: &DataType,
    size: usize,
) -> Result<ArrayRef> {
    use arrow::array::new_null_array;
    let array = value
        .as_ref()
        .map(|scalar| scalar.to_array_of_size(size))
        .unwrap_or_else(|| new_null_array(data_type, size));
    if array.data_type() != data_type {
        cast(&array, data_type).map_err(DataFusionError::ArrowError)
    } else {
        Ok(array)
    }
}

// TODO: change the original arrow::compute::kernels::window::shift impl to support an optional default value
fn shift_with_default_value(
    array: &ArrayRef,
    offset: i64,
    value: Option<&ScalarValue>,
) -> Result<ArrayRef> {
    use arrow::compute::concat;

    let value_len = array.len() as i64;
    if offset == 0 {
        Ok(array.clone())
    } else if offset == i64::MIN || offset.abs() >= value_len {
        create_empty_array(value, array.data_type(), array.len())
    } else {
        let slice_offset = (-offset).clamp(0, value_len) as usize;
        let length = array.len() - offset.unsigned_abs() as usize;
        let slice = array.slice(slice_offset, length);

        // Generate array with remaining `null` items
        let nulls = offset.unsigned_abs() as usize;
        let default_values = create_empty_array(value, slice.data_type(), nulls)?;
        // Concatenate both arrays, add nulls after if shift > 0 else before
        if offset > 0 {
            concat(&[default_values.as_ref(), slice.as_ref()])
                .map_err(DataFusionError::ArrowError)
        } else {
            concat(&[slice.as_ref(), default_values.as_ref()])
                .map_err(DataFusionError::ArrowError)
        }
    }
}

impl PartitionEvaluator for WindowShiftEvaluator {
    fn get_range(&self, idx: usize, n_rows: usize) -> Result<Range<usize>> {
        if self.shift_offset > 0 {
            let offset = self.shift_offset as usize;
            let start = idx.saturating_sub(offset);
            let end = idx + 1;
            Ok(Range { start, end })
        } else {
            let offset = (-self.shift_offset) as usize;
            let end = min(idx + offset, n_rows);
            Ok(Range { start: idx, end })
        }
    }

    fn evaluate(
        &mut self,
        values: &[ArrayRef],
        range: &Range<usize>,
    ) -> Result<ScalarValue> {
        let array = &values[0];
        let dtype = array.data_type();
        // LAG mode
        let idx = if self.shift_offset > 0 {
            range.end as i64 - self.shift_offset - 1
        } else {
            // LEAD mode
            range.start as i64 - self.shift_offset
        };

        if idx < 0 || idx as usize >= array.len() {
            get_default_value(self.default_value.as_ref(), dtype)
        } else {
            ScalarValue::try_from_array(array, idx as usize)
        }
    }

    fn evaluate_all(
        &mut self,
        values: &[ArrayRef],
        _num_rows: usize,
    ) -> Result<ArrayRef> {
        // LEAD, LAG window functions take single column, values will have size 1
        let value = &values[0];
        shift_with_default_value(value, self.shift_offset, self.default_value.as_ref())
    }

    fn supports_bounded_execution(&self) -> bool {
        true
    }
}

fn get_default_value(
    default_value: Option<&ScalarValue>,
    dtype: &DataType,
) -> Result<ScalarValue> {
    if let Some(value) = default_value {
        if let ScalarValue::Int64(Some(val)) = value {
            ScalarValue::try_from_string(val.to_string(), dtype)
        } else {
            internal_err!("Expects default value to have Int64 type")
        }
    } else {
        Ok(ScalarValue::try_from(dtype)?)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::expressions::Column;
    use arrow::record_batch::RecordBatch;
    use arrow::{array::*, datatypes::*};
    use datafusion_common::cast::as_int32_array;
    use datafusion_common::Result;

    fn test_i32_result(expr: WindowShift, expected: Int32Array) -> Result<()> {
        let arr: ArrayRef = Arc::new(Int32Array::from(vec![1, -2, 3, -4, 5, -6, 7, 8]));
        let values = vec![arr];
        let schema = Schema::new(vec![Field::new("arr", DataType::Int32, false)]);
        let batch = RecordBatch::try_new(Arc::new(schema), values.clone())?;
        let values = expr.evaluate_args(&batch)?;
        let result = expr
            .create_evaluator()?
            .evaluate_all(&values, batch.num_rows())?;
        let result = as_int32_array(&result)?;
        assert_eq!(expected, *result);
        Ok(())
    }

    #[test]
    fn lead_lag_window_shift() -> Result<()> {
        test_i32_result(
            lead(
                "lead".to_owned(),
                DataType::Float32,
                Arc::new(Column::new("c3", 0)),
                None,
                None,
            ),
            [
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
                Some(8),
                None,
            ]
            .iter()
            .collect::<Int32Array>(),
        )?;

        test_i32_result(
            lag(
                "lead".to_owned(),
                DataType::Float32,
                Arc::new(Column::new("c3", 0)),
                None,
                None,
            ),
            [
                None,
                Some(1),
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
            ]
            .iter()
            .collect::<Int32Array>(),
        )?;

        test_i32_result(
            lag(
                "lead".to_owned(),
                DataType::Int32,
                Arc::new(Column::new("c3", 0)),
                None,
                Some(ScalarValue::Int32(Some(100))),
            ),
            [
                Some(100),
                Some(1),
                Some(-2),
                Some(3),
                Some(-4),
                Some(5),
                Some(-6),
                Some(7),
            ]
            .iter()
            .collect::<Int32Array>(),
        )?;
        Ok(())
    }
}