1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::fmt::{Debug, Display};
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use crate::sort_properties::SortProperties;
use crate::utils::scatter;
use arrow::array::BooleanArray;
use arrow::compute::filter_record_batch;
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use datafusion_common::utils::DataPtr;
use datafusion_common::{internal_err, not_impl_err, DataFusionError, Result};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::ColumnarValue;
use itertools::izip;
/// Expression that can be evaluated against a RecordBatch
/// A Physical expression knows its type, nullability and how to evaluate itself.
pub trait PhysicalExpr: Send + Sync + Display + Debug + PartialEq<dyn Any> {
/// Returns the physical expression as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Get the data type of this expression, given the schema of the input
fn data_type(&self, input_schema: &Schema) -> Result<DataType>;
/// Determine whether this expression is nullable, given the schema of the input
fn nullable(&self, input_schema: &Schema) -> Result<bool>;
/// Evaluate an expression against a RecordBatch
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue>;
/// Evaluate an expression against a RecordBatch after first applying a
/// validity array
fn evaluate_selection(
&self,
batch: &RecordBatch,
selection: &BooleanArray,
) -> Result<ColumnarValue> {
let tmp_batch = filter_record_batch(batch, selection)?;
let tmp_result = self.evaluate(&tmp_batch)?;
if batch.num_rows() == tmp_batch.num_rows() {
// All values from the `selection` filter are true.
Ok(tmp_result)
} else if let ColumnarValue::Array(a) = tmp_result {
scatter(selection, a.as_ref()).map(ColumnarValue::Array)
} else {
Ok(tmp_result)
}
}
/// Get a list of child PhysicalExpr that provide the input for this expr.
fn children(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Returns a new PhysicalExpr where all children were replaced by new exprs.
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>>;
/// Computes the output interval for the expression, given the input
/// intervals.
///
/// # Arguments
///
/// * `children` are the intervals for the children (inputs) of this
/// expression.
///
/// # Example
///
/// If the expression is `a + b`, and the input intervals are `a: [1, 2]`
/// and `b: [3, 4]`, then the output interval would be `[4, 6]`.
fn evaluate_bounds(&self, _children: &[&Interval]) -> Result<Interval> {
not_impl_err!("Not implemented for {self}")
}
/// Updates bounds for child expressions, given a known interval for this
/// expression.
///
/// This is used to propagate constraints down through an expression tree.
///
/// # Arguments
///
/// * `interval` is the currently known interval for this expression.
/// * `children` are the current intervals for the children of this expression.
///
/// # Returns
///
/// A `Vec` of new intervals for the children, in order.
///
/// If constraint propagation reveals an infeasibility for any child, returns
/// [`None`]. If none of the children intervals change as a result of propagation,
/// may return an empty vector instead of cloning `children`. This is the default
/// (and conservative) return value.
///
/// # Example
///
/// If the expression is `a + b`, the current `interval` is `[4, 5]` and the
/// inputs `a` and `b` are respectively given as `[0, 2]` and `[-∞, 4]`, then
/// propagation would would return `[0, 2]` and `[2, 4]` as `b` must be at
/// least `2` to make the output at least `4`.
fn propagate_constraints(
&self,
_interval: &Interval,
_children: &[&Interval],
) -> Result<Option<Vec<Interval>>> {
Ok(Some(vec![]))
}
/// Update the hash `state` with this expression requirements from
/// [`Hash`].
///
/// This method is required to support hashing [`PhysicalExpr`]s. To
/// implement it, typically the type implementing
/// [`PhysicalExpr`] implements [`Hash`] and
/// then the following boiler plate is used:
///
/// # Example:
/// ```
/// // User defined expression that derives Hash
/// #[derive(Hash, Debug, PartialEq, Eq)]
/// struct MyExpr {
/// val: u64
/// }
///
/// // impl PhysicalExpr {
/// // ...
/// # impl MyExpr {
/// // Boiler plate to call the derived Hash impl
/// fn dyn_hash(&self, state: &mut dyn std::hash::Hasher) {
/// use std::hash::Hash;
/// let mut s = state;
/// self.hash(&mut s);
/// }
/// // }
/// # }
/// ```
/// Note: [`PhysicalExpr`] is not constrained by [`Hash`]
/// directly because it must remain object safe.
fn dyn_hash(&self, _state: &mut dyn Hasher);
/// The order information of a PhysicalExpr can be estimated from its children.
/// This is especially helpful for projection expressions. If we can ensure that the
/// order of a PhysicalExpr to project matches with the order of SortExec, we can
/// eliminate that SortExecs.
///
/// By recursively calling this function, we can obtain the overall order
/// information of the PhysicalExpr. Since `SortOptions` cannot fully handle
/// the propagation of unordered columns and literals, the `SortProperties`
/// struct is used.
fn get_ordering(&self, _children: &[SortProperties]) -> SortProperties {
SortProperties::Unordered
}
}
impl Hash for dyn PhysicalExpr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.dyn_hash(state);
}
}
/// Shared [`PhysicalExpr`].
pub type PhysicalExprRef = Arc<dyn PhysicalExpr>;
/// Returns a copy of this expr if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `PhysicalExpr::children()`.
pub fn with_new_children_if_necessary(
expr: Arc<dyn PhysicalExpr>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
let old_children = expr.children();
if children.len() != old_children.len() {
internal_err!("PhysicalExpr: Wrong number of children")
} else if children.is_empty()
|| children
.iter()
.zip(old_children.iter())
.any(|(c1, c2)| !Arc::data_ptr_eq(c1, c2))
{
expr.with_new_children(children)
} else {
Ok(expr)
}
}
pub fn down_cast_any_ref(any: &dyn Any) -> &dyn Any {
if any.is::<Arc<dyn PhysicalExpr>>() {
any.downcast_ref::<Arc<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else if any.is::<Box<dyn PhysicalExpr>>() {
any.downcast_ref::<Box<dyn PhysicalExpr>>()
.unwrap()
.as_any()
} else {
any
}
}
/// This function is similar to the `contains` method of `Vec`. It finds
/// whether `expr` is among `physical_exprs`.
pub fn physical_exprs_contains(
physical_exprs: &[Arc<dyn PhysicalExpr>],
expr: &Arc<dyn PhysicalExpr>,
) -> bool {
physical_exprs
.iter()
.any(|physical_expr| physical_expr.eq(expr))
}
/// Checks whether the given physical expression slices are equal.
pub fn physical_exprs_equal(
lhs: &[Arc<dyn PhysicalExpr>],
rhs: &[Arc<dyn PhysicalExpr>],
) -> bool {
lhs.len() == rhs.len() && izip!(lhs, rhs).all(|(lhs, rhs)| lhs.eq(rhs))
}
/// Checks whether the given physical expression slices are equal in the sense
/// of bags (multi-sets), disregarding their orderings.
pub fn physical_exprs_bag_equal(
lhs: &[Arc<dyn PhysicalExpr>],
rhs: &[Arc<dyn PhysicalExpr>],
) -> bool {
// TODO: Once we can use `HashMap`s with `Arc<dyn PhysicalExpr>`, this
// function should use a `HashMap` to reduce computational complexity.
if lhs.len() == rhs.len() {
let mut rhs_vec = rhs.to_vec();
for expr in lhs {
if let Some(idx) = rhs_vec.iter().position(|e| expr.eq(e)) {
rhs_vec.swap_remove(idx);
} else {
return false;
}
}
true
} else {
false
}
}
/// This utility function removes duplicates from the given `exprs` vector.
/// Note that this function does not necessarily preserve its input ordering.
pub fn deduplicate_physical_exprs(exprs: &mut Vec<Arc<dyn PhysicalExpr>>) {
// TODO: Once we can use `HashSet`s with `Arc<dyn PhysicalExpr>`, this
// function should use a `HashSet` to reduce computational complexity.
// See issue: https://github.com/apache/arrow-datafusion/issues/8027
let mut idx = 0;
while idx < exprs.len() {
let mut rest_idx = idx + 1;
while rest_idx < exprs.len() {
if exprs[idx].eq(&exprs[rest_idx]) {
exprs.swap_remove(rest_idx);
} else {
rest_idx += 1;
}
}
idx += 1;
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::expressions::{Column, Literal};
use crate::physical_expr::{
deduplicate_physical_exprs, physical_exprs_bag_equal, physical_exprs_contains,
physical_exprs_equal, PhysicalExpr,
};
use datafusion_common::ScalarValue;
#[test]
fn test_physical_exprs_contains() {
let lit_true = Arc::new(Literal::new(ScalarValue::Boolean(Some(true))))
as Arc<dyn PhysicalExpr>;
let lit_false = Arc::new(Literal::new(ScalarValue::Boolean(Some(false))))
as Arc<dyn PhysicalExpr>;
let lit4 =
Arc::new(Literal::new(ScalarValue::Int32(Some(4)))) as Arc<dyn PhysicalExpr>;
let lit2 =
Arc::new(Literal::new(ScalarValue::Int32(Some(2)))) as Arc<dyn PhysicalExpr>;
let lit1 =
Arc::new(Literal::new(ScalarValue::Int32(Some(1)))) as Arc<dyn PhysicalExpr>;
let col_a_expr = Arc::new(Column::new("a", 0)) as Arc<dyn PhysicalExpr>;
let col_b_expr = Arc::new(Column::new("b", 1)) as Arc<dyn PhysicalExpr>;
let col_c_expr = Arc::new(Column::new("c", 2)) as Arc<dyn PhysicalExpr>;
// lit(true), lit(false), lit(4), lit(2), Col(a), Col(b)
let physical_exprs: Vec<Arc<dyn PhysicalExpr>> = vec![
lit_true.clone(),
lit_false.clone(),
lit4.clone(),
lit2.clone(),
col_a_expr.clone(),
col_b_expr.clone(),
];
// below expressions are inside physical_exprs
assert!(physical_exprs_contains(&physical_exprs, &lit_true));
assert!(physical_exprs_contains(&physical_exprs, &lit2));
assert!(physical_exprs_contains(&physical_exprs, &col_b_expr));
// below expressions are not inside physical_exprs
assert!(!physical_exprs_contains(&physical_exprs, &col_c_expr));
assert!(!physical_exprs_contains(&physical_exprs, &lit1));
}
#[test]
fn test_physical_exprs_equal() {
let lit_true = Arc::new(Literal::new(ScalarValue::Boolean(Some(true))))
as Arc<dyn PhysicalExpr>;
let lit_false = Arc::new(Literal::new(ScalarValue::Boolean(Some(false))))
as Arc<dyn PhysicalExpr>;
let lit1 =
Arc::new(Literal::new(ScalarValue::Int32(Some(1)))) as Arc<dyn PhysicalExpr>;
let lit2 =
Arc::new(Literal::new(ScalarValue::Int32(Some(2)))) as Arc<dyn PhysicalExpr>;
let col_b_expr = Arc::new(Column::new("b", 1)) as Arc<dyn PhysicalExpr>;
let vec1 = vec![lit_true.clone(), lit_false.clone()];
let vec2 = vec![lit_true.clone(), col_b_expr.clone()];
let vec3 = vec![lit2.clone(), lit1.clone()];
let vec4 = vec![lit_true.clone(), lit_false.clone()];
// these vectors are same
assert!(physical_exprs_equal(&vec1, &vec1));
assert!(physical_exprs_equal(&vec1, &vec4));
assert!(physical_exprs_bag_equal(&vec1, &vec1));
assert!(physical_exprs_bag_equal(&vec1, &vec4));
// these vectors are different
assert!(!physical_exprs_equal(&vec1, &vec2));
assert!(!physical_exprs_equal(&vec1, &vec3));
assert!(!physical_exprs_bag_equal(&vec1, &vec2));
assert!(!physical_exprs_bag_equal(&vec1, &vec3));
}
#[test]
fn test_physical_exprs_set_equal() {
let list1: Vec<Arc<dyn PhysicalExpr>> = vec![
Arc::new(Column::new("a", 0)),
Arc::new(Column::new("a", 0)),
Arc::new(Column::new("b", 1)),
];
let list2: Vec<Arc<dyn PhysicalExpr>> = vec![
Arc::new(Column::new("b", 1)),
Arc::new(Column::new("b", 1)),
Arc::new(Column::new("a", 0)),
];
assert!(!physical_exprs_bag_equal(
list1.as_slice(),
list2.as_slice()
));
assert!(!physical_exprs_bag_equal(
list2.as_slice(),
list1.as_slice()
));
assert!(!physical_exprs_equal(list1.as_slice(), list2.as_slice()));
assert!(!physical_exprs_equal(list2.as_slice(), list1.as_slice()));
let list3: Vec<Arc<dyn PhysicalExpr>> = vec![
Arc::new(Column::new("a", 0)),
Arc::new(Column::new("b", 1)),
Arc::new(Column::new("c", 2)),
Arc::new(Column::new("a", 0)),
Arc::new(Column::new("b", 1)),
];
let list4: Vec<Arc<dyn PhysicalExpr>> = vec![
Arc::new(Column::new("b", 1)),
Arc::new(Column::new("b", 1)),
Arc::new(Column::new("a", 0)),
Arc::new(Column::new("c", 2)),
Arc::new(Column::new("a", 0)),
];
assert!(physical_exprs_bag_equal(list3.as_slice(), list4.as_slice()));
assert!(physical_exprs_bag_equal(list4.as_slice(), list3.as_slice()));
assert!(physical_exprs_bag_equal(list3.as_slice(), list3.as_slice()));
assert!(physical_exprs_bag_equal(list4.as_slice(), list4.as_slice()));
assert!(!physical_exprs_equal(list3.as_slice(), list4.as_slice()));
assert!(!physical_exprs_equal(list4.as_slice(), list3.as_slice()));
assert!(physical_exprs_bag_equal(list3.as_slice(), list3.as_slice()));
assert!(physical_exprs_bag_equal(list4.as_slice(), list4.as_slice()));
}
#[test]
fn test_deduplicate_physical_exprs() {
let lit_true = &(Arc::new(Literal::new(ScalarValue::Boolean(Some(true))))
as Arc<dyn PhysicalExpr>);
let lit_false = &(Arc::new(Literal::new(ScalarValue::Boolean(Some(false))))
as Arc<dyn PhysicalExpr>);
let lit4 = &(Arc::new(Literal::new(ScalarValue::Int32(Some(4))))
as Arc<dyn PhysicalExpr>);
let lit2 = &(Arc::new(Literal::new(ScalarValue::Int32(Some(2))))
as Arc<dyn PhysicalExpr>);
let col_a_expr = &(Arc::new(Column::new("a", 0)) as Arc<dyn PhysicalExpr>);
let col_b_expr = &(Arc::new(Column::new("b", 1)) as Arc<dyn PhysicalExpr>);
// First vector in the tuple is arguments, second one is the expected value.
let test_cases = vec![
// ---------- TEST CASE 1----------//
(
vec![
lit_true, lit_false, lit4, lit2, col_a_expr, col_a_expr, col_b_expr,
lit_true, lit2,
],
vec![lit_true, lit_false, lit4, lit2, col_a_expr, col_b_expr],
),
// ---------- TEST CASE 2----------//
(
vec![lit_true, lit_true, lit_false, lit4],
vec![lit_true, lit4, lit_false],
),
];
for (exprs, expected) in test_cases {
let mut exprs = exprs.into_iter().cloned().collect::<Vec<_>>();
let expected = expected.into_iter().cloned().collect::<Vec<_>>();
deduplicate_physical_exprs(&mut exprs);
assert!(physical_exprs_equal(&exprs, &expected));
}
}
}