1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::Array;
use datafusion_common::cast::as_list_array;
use datafusion_common::utils::array_into_list_array;
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;

/// ARRAY_AGG aggregate expression
#[derive(Debug)]
pub struct ArrayAgg {
    /// Column name
    name: String,
    /// The DataType for the input expression
    input_data_type: DataType,
    /// The input expression
    expr: Arc<dyn PhysicalExpr>,
    /// If the input expression can have NULLs
    nullable: bool,
}

impl ArrayAgg {
    /// Create a new ArrayAgg aggregate function
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        data_type: DataType,
        nullable: bool,
    ) -> Self {
        Self {
            name: name.into(),
            input_data_type: data_type,
            expr,
            nullable,
        }
    }
}

impl AggregateExpr for ArrayAgg {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new_list(
            &self.name,
            // This should be the same as return type of AggregateFunction::ArrayAgg
            Field::new("item", self.input_data_type.clone(), true),
            self.nullable,
        ))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(ArrayAggAccumulator::try_new(
            &self.input_data_type,
        )?))
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        Ok(vec![Field::new_list(
            format_state_name(&self.name, "array_agg"),
            Field::new("item", self.input_data_type.clone(), true),
            self.nullable,
        )])
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn name(&self) -> &str {
        &self.name
    }
}

impl PartialEq<dyn Any> for ArrayAgg {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.input_data_type == x.input_data_type
                    && self.expr.eq(&x.expr)
            })
            .unwrap_or(false)
    }
}

#[derive(Debug)]
pub(crate) struct ArrayAggAccumulator {
    values: Vec<ArrayRef>,
    datatype: DataType,
}

impl ArrayAggAccumulator {
    /// new array_agg accumulator based on given item data type
    pub fn try_new(datatype: &DataType) -> Result<Self> {
        Ok(Self {
            values: vec![],
            datatype: datatype.clone(),
        })
    }
}

impl Accumulator for ArrayAggAccumulator {
    // Append value like Int64Array(1,2,3)
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }
        assert!(values.len() == 1, "array_agg can only take 1 param!");
        let val = values[0].clone();
        self.values.push(val);
        Ok(())
    }

    // Append value like ListArray(Int64Array(1,2,3), Int64Array(4,5,6))
    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }
        assert!(states.len() == 1, "array_agg states must be singleton!");

        let list_arr = as_list_array(&states[0])?;
        for arr in list_arr.iter().flatten() {
            self.values.push(arr);
        }
        Ok(())
    }

    fn state(&self) -> Result<Vec<ScalarValue>> {
        Ok(vec![self.evaluate()?])
    }

    fn evaluate(&self) -> Result<ScalarValue> {
        // Transform Vec<ListArr> to ListArr

        let element_arrays: Vec<&dyn Array> =
            self.values.iter().map(|a| a.as_ref()).collect();

        if element_arrays.is_empty() {
            let arr = ScalarValue::new_list(&[], &self.datatype);
            return Ok(ScalarValue::List(arr));
        }

        let concated_array = arrow::compute::concat(&element_arrays)?;
        let list_array = array_into_list_array(concated_array);

        Ok(ScalarValue::List(Arc::new(list_array)))
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
            + (std::mem::size_of::<ArrayRef>() * self.values.capacity())
            + self
                .values
                .iter()
                .map(|arr| arr.get_array_memory_size())
                .sum::<usize>()
            + self.datatype.size()
            - std::mem::size_of_val(&self.datatype)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::expressions::col;
    use crate::expressions::tests::aggregate;
    use arrow::array::ArrayRef;
    use arrow::array::Int32Array;
    use arrow::datatypes::*;
    use arrow::record_batch::RecordBatch;
    use arrow_array::Array;
    use arrow_array::ListArray;
    use arrow_buffer::OffsetBuffer;
    use datafusion_common::DataFusionError;
    use datafusion_common::Result;

    macro_rules! test_op {
        ($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr) => {
            test_op!($ARRAY, $DATATYPE, $OP, $EXPECTED, $EXPECTED.data_type())
        };
        ($ARRAY:expr, $DATATYPE:expr, $OP:ident, $EXPECTED:expr, $EXPECTED_DATATYPE:expr) => {{
            let schema = Schema::new(vec![Field::new("a", $DATATYPE, true)]);

            let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![$ARRAY])?;

            let agg = Arc::new(<$OP>::new(
                col("a", &schema)?,
                "bla".to_string(),
                $EXPECTED_DATATYPE,
                true,
            ));
            let actual = aggregate(&batch, agg)?;
            let expected = ScalarValue::from($EXPECTED);

            assert_eq!(expected, actual);

            Ok(()) as Result<(), DataFusionError>
        }};
    }

    #[test]
    fn array_agg_i32() -> Result<()> {
        let a: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 3, 4, 5]));

        let list = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
            Some(1),
            Some(2),
            Some(3),
            Some(4),
            Some(5),
        ])]);
        let list = ScalarValue::List(Arc::new(list));

        test_op!(a, DataType::Int32, ArrayAgg, list, DataType::Int32)
    }

    #[test]
    fn array_agg_nested() -> Result<()> {
        let a1 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
            Some(1),
            Some(2),
            Some(3),
        ])]);
        let a2 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
            Some(4),
            Some(5),
        ])]);
        let l1 = ListArray::new(
            Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
            OffsetBuffer::from_lengths([a1.len() + a2.len()]),
            arrow::compute::concat(&[&a1, &a2])?,
            None,
        );

        let a1 =
            ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(6)])]);
        let a2 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
            Some(7),
            Some(8),
        ])]);
        let l2 = ListArray::new(
            Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
            OffsetBuffer::from_lengths([a1.len() + a2.len()]),
            arrow::compute::concat(&[&a1, &a2])?,
            None,
        );

        let a1 =
            ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(9)])]);
        let l3 = ListArray::new(
            Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
            OffsetBuffer::from_lengths([a1.len()]),
            arrow::compute::concat(&[&a1])?,
            None,
        );

        let list = ListArray::new(
            Arc::new(Field::new("item", l1.data_type().to_owned(), true)),
            OffsetBuffer::from_lengths([l1.len() + l2.len() + l3.len()]),
            arrow::compute::concat(&[&l1, &l2, &l3])?,
            None,
        );
        let list = ScalarValue::List(Arc::new(list));
        let l1 = ScalarValue::List(Arc::new(l1));
        let l2 = ScalarValue::List(Arc::new(l2));
        let l3 = ScalarValue::List(Arc::new(l3));

        let array = ScalarValue::iter_to_array(vec![l1, l2, l3]).unwrap();

        test_op!(
            array,
            DataType::List(Arc::new(Field::new_list(
                "item",
                Field::new("item", DataType::Int32, true),
                true,
            ))),
            ArrayAgg,
            list,
            DataType::List(Arc::new(Field::new("item", DataType::Int32, true,)))
        )
    }
}