1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! UDF support
use crate::{PhysicalExpr, ScalarFunctionExpr};
use arrow_schema::Schema;
use datafusion_common::{DFSchema, Result};
pub use datafusion_expr::ScalarUDF;
use datafusion_expr::{
    type_coercion::functions::data_types, Expr, ScalarFunctionDefinition,
};
use std::sync::Arc;

/// Create a physical expression of the UDF.
///
/// Arguments:
pub fn create_physical_expr(
    fun: &ScalarUDF,
    input_phy_exprs: &[Arc<dyn PhysicalExpr>],
    input_schema: &Schema,
    args: &[Expr],
    input_dfschema: &DFSchema,
) -> Result<Arc<dyn PhysicalExpr>> {
    let input_expr_types = input_phy_exprs
        .iter()
        .map(|e| e.data_type(input_schema))
        .collect::<Result<Vec<_>>>()?;

    // verify that input data types is consistent with function's `TypeSignature`
    data_types(&input_expr_types, fun.signature())?;

    // Since we have arg_types, we dont need args and schema.
    let return_type =
        fun.return_type_from_exprs(args, input_dfschema, &input_expr_types)?;

    let fun_def = ScalarFunctionDefinition::UDF(Arc::new(fun.clone()));
    Ok(Arc::new(ScalarFunctionExpr::new(
        fun.name(),
        fun_def,
        input_phy_exprs.to_vec(),
        return_type,
        fun.monotonicity()?,
        fun.signature().type_signature.supports_zero_argument(),
    )))
}

#[cfg(test)]
mod tests {
    use arrow_schema::{DataType, Schema};
    use datafusion_common::{DFSchema, Result};
    use datafusion_expr::{
        ColumnarValue, FuncMonotonicity, ScalarUDF, ScalarUDFImpl, Signature, Volatility,
    };

    use crate::ScalarFunctionExpr;

    use super::create_physical_expr;

    #[test]
    fn test_functions() -> Result<()> {
        #[derive(Debug, Clone)]
        struct TestScalarUDF {
            signature: Signature,
        }

        impl TestScalarUDF {
            fn new() -> Self {
                let signature =
                    Signature::exact(vec![DataType::Float64], Volatility::Immutable);

                Self { signature }
            }
        }

        impl ScalarUDFImpl for TestScalarUDF {
            fn as_any(&self) -> &dyn std::any::Any {
                self
            }

            fn name(&self) -> &str {
                "my_fn"
            }

            fn signature(&self) -> &Signature {
                &self.signature
            }

            fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
                Ok(DataType::Float64)
            }

            fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue> {
                unimplemented!("my_fn is not implemented")
            }

            fn monotonicity(&self) -> Result<Option<FuncMonotonicity>> {
                Ok(Some(vec![Some(true)]))
            }
        }

        // create and register the udf
        let udf = ScalarUDF::from(TestScalarUDF::new());

        let e = crate::expressions::lit(1.1);
        let p_expr =
            create_physical_expr(&udf, &[e], &Schema::empty(), &[], &DFSchema::empty())?;

        assert_eq!(
            p_expr
                .as_any()
                .downcast_ref::<ScalarFunctionExpr>()
                .unwrap()
                .monotonicity(),
            &Some(vec![Some(true)])
        );

        Ok(())
    }
}