1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::Array;
use datafusion_common::cast::as_list_array;
use datafusion_common::utils::array_into_list_array;
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;

/// ARRAY_AGG aggregate expression
#[derive(Debug)]
pub struct ArrayAgg {
    /// Column name
    name: String,
    /// The DataType for the input expression
    input_data_type: DataType,
    /// The input expression
    expr: Arc<dyn PhysicalExpr>,
    /// If the input expression can have NULLs
    nullable: bool,
}

impl ArrayAgg {
    /// Create a new ArrayAgg aggregate function
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        data_type: DataType,
        nullable: bool,
    ) -> Self {
        Self {
            name: name.into(),
            input_data_type: data_type,
            expr,
            nullable,
        }
    }
}

impl AggregateExpr for ArrayAgg {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new_list(
            &self.name,
            // This should be the same as return type of AggregateFunction::ArrayAgg
            Field::new("item", self.input_data_type.clone(), true),
            self.nullable,
        ))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(ArrayAggAccumulator::try_new(
            &self.input_data_type,
        )?))
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        Ok(vec![Field::new_list(
            format_state_name(&self.name, "array_agg"),
            Field::new("item", self.input_data_type.clone(), true),
            self.nullable,
        )])
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn name(&self) -> &str {
        &self.name
    }
}

impl PartialEq<dyn Any> for ArrayAgg {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.input_data_type == x.input_data_type
                    && self.expr.eq(&x.expr)
            })
            .unwrap_or(false)
    }
}

#[derive(Debug)]
pub(crate) struct ArrayAggAccumulator {
    values: Vec<ArrayRef>,
    datatype: DataType,
}

impl ArrayAggAccumulator {
    /// new array_agg accumulator based on given item data type
    pub fn try_new(datatype: &DataType) -> Result<Self> {
        Ok(Self {
            values: vec![],
            datatype: datatype.clone(),
        })
    }
}

impl Accumulator for ArrayAggAccumulator {
    // Append value like Int64Array(1,2,3)
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }
        assert!(values.len() == 1, "array_agg can only take 1 param!");
        let val = values[0].clone();
        self.values.push(val);
        Ok(())
    }

    // Append value like ListArray(Int64Array(1,2,3), Int64Array(4,5,6))
    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }
        assert!(states.len() == 1, "array_agg states must be singleton!");

        let list_arr = as_list_array(&states[0])?;
        for arr in list_arr.iter().flatten() {
            self.values.push(arr);
        }
        Ok(())
    }

    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![self.evaluate()?])
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        // Transform Vec<ListArr> to ListArr

        let element_arrays: Vec<&dyn Array> =
            self.values.iter().map(|a| a.as_ref()).collect();

        if element_arrays.is_empty() {
            let arr = ScalarValue::new_list(&[], &self.datatype);
            return Ok(ScalarValue::List(arr));
        }

        let concated_array = arrow::compute::concat(&element_arrays)?;
        let list_array = array_into_list_array(concated_array);

        Ok(ScalarValue::List(Arc::new(list_array)))
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
            + (std::mem::size_of::<ArrayRef>() * self.values.capacity())
            + self
                .values
                .iter()
                .map(|arr| arr.get_array_memory_size())
                .sum::<usize>()
            + self.datatype.size()
            - std::mem::size_of_val(&self.datatype)
    }
}