use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::Array;
use datafusion_common::cast::as_list_array;
use datafusion_common::utils::array_into_list_array;
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::Accumulator;
use std::any::Any;
use std::sync::Arc;
#[derive(Debug)]
pub struct ArrayAgg {
name: String,
input_data_type: DataType,
expr: Arc<dyn PhysicalExpr>,
nullable: bool,
}
impl ArrayAgg {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
nullable: bool,
) -> Self {
Self {
name: name.into(),
input_data_type: data_type,
expr,
nullable,
}
}
}
impl AggregateExpr for ArrayAgg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new_list(
&self.name,
Field::new("item", self.input_data_type.clone(), true),
self.nullable,
))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(ArrayAggAccumulator::try_new(
&self.input_data_type,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new_list(
format_state_name(&self.name, "array_agg"),
Field::new("item", self.input_data_type.clone(), true),
self.nullable,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
}
impl PartialEq<dyn Any> for ArrayAgg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.input_data_type == x.input_data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
#[derive(Debug)]
pub(crate) struct ArrayAggAccumulator {
values: Vec<ArrayRef>,
datatype: DataType,
}
impl ArrayAggAccumulator {
pub fn try_new(datatype: &DataType) -> Result<Self> {
Ok(Self {
values: vec![],
datatype: datatype.clone(),
})
}
}
impl Accumulator for ArrayAggAccumulator {
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
assert!(values.len() == 1, "array_agg can only take 1 param!");
let val = values[0].clone();
self.values.push(val);
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
assert!(states.len() == 1, "array_agg states must be singleton!");
let list_arr = as_list_array(&states[0])?;
for arr in list_arr.iter().flatten() {
self.values.push(arr);
}
Ok(())
}
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![self.evaluate()?])
}
fn evaluate(&mut self) -> Result<ScalarValue> {
let element_arrays: Vec<&dyn Array> =
self.values.iter().map(|a| a.as_ref()).collect();
if element_arrays.is_empty() {
let arr = ScalarValue::new_list(&[], &self.datatype);
return Ok(ScalarValue::List(arr));
}
let concated_array = arrow::compute::concat(&element_arrays)?;
let list_array = array_into_list_array(concated_array);
Ok(ScalarValue::List(Arc::new(list_array)))
}
fn size(&self) -> usize {
std::mem::size_of_val(self)
+ (std::mem::size_of::<ArrayRef>() * self.values.capacity())
+ self
.values
.iter()
.map(|arr| arr.get_array_memory_size())
.sum::<usize>()
+ self.datatype.size()
- std::mem::size_of_val(&self.datatype)
}
}