1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Declaration of built-in (scalar) functions.
//! This module contains built-in functions' enumeration and metadata.
//!
//! Generally, a function has:
//! * a signature
//! * a return type, that is a function of the incoming argument's types
//! * the computation, that must accept each valid signature
//!
//! * Signature: see `Signature`
//! * Return type: a function `(arg_types) -> return_type`. E.g. for sqrt, ([f32]) -> f32, ([f64]) -> f64.
//!
//! This module also has a set of coercion rules to improve user experience: if an argument i32 is passed
//! to a function that supports f64, it is coerced to f64.

use std::any::Any;
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher};
use std::ops::Neg;
use std::sync::Arc;

use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;

use datafusion_common::{internal_err, DFSchema, Result};
use datafusion_expr::type_coercion::functions::data_types;
use datafusion_expr::{
    expr_vec_fmt, ColumnarValue, Expr, FuncMonotonicity, ScalarFunctionDefinition,
    ScalarUDF,
};

use crate::physical_expr::{down_cast_any_ref, physical_exprs_equal};
use crate::sort_properties::SortProperties;
use crate::PhysicalExpr;

/// Physical expression of a scalar function
pub struct ScalarFunctionExpr {
    fun: ScalarFunctionDefinition,
    name: String,
    args: Vec<Arc<dyn PhysicalExpr>>,
    return_type: DataType,
    // Keeps monotonicity information of the function.
    // FuncMonotonicity vector is one to one mapped to `args`,
    // and it specifies the effect of an increase or decrease in
    // the corresponding `arg` to the function value.
    monotonicity: Option<FuncMonotonicity>,
}

impl Debug for ScalarFunctionExpr {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("ScalarFunctionExpr")
            .field("fun", &"<FUNC>")
            .field("name", &self.name)
            .field("args", &self.args)
            .field("return_type", &self.return_type)
            .field("monotonicity", &self.monotonicity)
            .finish()
    }
}

impl ScalarFunctionExpr {
    /// Create a new Scalar function
    pub fn new(
        name: &str,
        fun: ScalarFunctionDefinition,
        args: Vec<Arc<dyn PhysicalExpr>>,
        return_type: DataType,
        monotonicity: Option<FuncMonotonicity>,
    ) -> Self {
        Self {
            fun,
            name: name.to_owned(),
            args,
            return_type,
            monotonicity,
        }
    }

    /// Get the scalar function implementation
    pub fn fun(&self) -> &ScalarFunctionDefinition {
        &self.fun
    }

    /// The name for this expression
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Input arguments
    pub fn args(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.args
    }

    /// Data type produced by this expression
    pub fn return_type(&self) -> &DataType {
        &self.return_type
    }

    /// Monotonicity information of the function
    pub fn monotonicity(&self) -> &Option<FuncMonotonicity> {
        &self.monotonicity
    }
}

impl fmt::Display for ScalarFunctionExpr {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}({})", self.name, expr_vec_fmt!(self.args))
    }
}

impl PhysicalExpr for ScalarFunctionExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
        Ok(self.return_type.clone())
    }

    fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
        Ok(true)
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        let inputs = self
            .args
            .iter()
            .map(|e| e.evaluate(batch))
            .collect::<Result<Vec<_>>>()?;

        // evaluate the function
        match self.fun {
            ScalarFunctionDefinition::UDF(ref fun) => {
                let output = match self.args.is_empty() {
                    true => fun.invoke_no_args(batch.num_rows()),
                    false => fun.invoke(&inputs),
                }?;

                if let ColumnarValue::Array(array) = &output {
                    if array.len() != batch.num_rows() {
                        return internal_err!("UDF returned a different number of rows than expected. Expected: {}, Got: {}",
                        batch.num_rows(), array.len());
                    }
                }
                Ok(output)
            }
        }
    }

    fn children(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.args.clone()
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(Arc::new(ScalarFunctionExpr::new(
            &self.name,
            self.fun.clone(),
            children,
            self.return_type().clone(),
            self.monotonicity.clone(),
        )))
    }

    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.name.hash(&mut s);
        self.args.hash(&mut s);
        self.return_type.hash(&mut s);
        // Add `self.fun` when hash is available
    }

    fn get_ordering(&self, children: &[SortProperties]) -> SortProperties {
        self.monotonicity
            .as_ref()
            .map(|monotonicity| out_ordering(monotonicity, children))
            .unwrap_or(SortProperties::Unordered)
    }
}

impl PartialEq<dyn Any> for ScalarFunctionExpr {
    /// Comparing name, args and return_type
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && physical_exprs_equal(&self.args, &x.args)
                    && self.return_type == x.return_type
            })
            .unwrap_or(false)
    }
}

/// Create a physical expression for the UDF.
///
/// Arguments:
pub fn create_physical_expr(
    fun: &ScalarUDF,
    input_phy_exprs: &[Arc<dyn PhysicalExpr>],
    input_schema: &Schema,
    args: &[Expr],
    input_dfschema: &DFSchema,
) -> Result<Arc<dyn PhysicalExpr>> {
    let input_expr_types = input_phy_exprs
        .iter()
        .map(|e| e.data_type(input_schema))
        .collect::<Result<Vec<_>>>()?;

    // verify that input data types is consistent with function's `TypeSignature`
    data_types(&input_expr_types, fun.signature())?;

    // Since we have arg_types, we dont need args and schema.
    let return_type =
        fun.return_type_from_exprs(args, input_dfschema, &input_expr_types)?;

    let fun_def = ScalarFunctionDefinition::UDF(Arc::new(fun.clone()));
    Ok(Arc::new(ScalarFunctionExpr::new(
        fun.name(),
        fun_def,
        input_phy_exprs.to_vec(),
        return_type,
        fun.monotonicity()?,
    )))
}

/// Determines a [ScalarFunctionExpr]'s monotonicity for the given arguments
/// and the function's behavior depending on its arguments.
///
/// [ScalarFunctionExpr]: crate::scalar_function::ScalarFunctionExpr
pub fn out_ordering(
    func: &FuncMonotonicity,
    arg_orderings: &[SortProperties],
) -> SortProperties {
    func.iter().zip(arg_orderings).fold(
        SortProperties::Singleton,
        |prev_sort, (item, arg)| {
            let current_sort = func_order_in_one_dimension(item, arg);

            match (prev_sort, current_sort) {
                (_, SortProperties::Unordered) => SortProperties::Unordered,
                (SortProperties::Singleton, SortProperties::Ordered(_)) => current_sort,
                (SortProperties::Ordered(prev), SortProperties::Ordered(current))
                    if prev.descending != current.descending =>
                {
                    SortProperties::Unordered
                }
                _ => prev_sort,
            }
        },
    )
}

/// This function decides the monotonicity property of a [ScalarFunctionExpr] for a single argument (i.e. across a single dimension), given that argument's sort properties.
///
/// [ScalarFunctionExpr]: crate::scalar_function::ScalarFunctionExpr
fn func_order_in_one_dimension(
    func_monotonicity: &Option<bool>,
    arg: &SortProperties,
) -> SortProperties {
    if *arg == SortProperties::Singleton {
        SortProperties::Singleton
    } else {
        match func_monotonicity {
            None => SortProperties::Unordered,
            Some(false) => {
                if let SortProperties::Ordered(_) = arg {
                    arg.neg()
                } else {
                    SortProperties::Unordered
                }
            }
            Some(true) => {
                if let SortProperties::Ordered(_) = arg {
                    *arg
                } else {
                    SortProperties::Unordered
                }
            }
        }
    }
}