use std::any::Any;
use std::collections::HashSet;
use std::fmt::Debug;
use std::sync::Arc;
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::cast::AsArray;
use crate::aggregate::utils::down_cast_any_ref;
use crate::expressions::format_state_name;
use crate::{AggregateExpr, PhysicalExpr};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::Accumulator;
#[derive(Debug)]
pub struct DistinctArrayAgg {
name: String,
input_data_type: DataType,
expr: Arc<dyn PhysicalExpr>,
nullable: bool,
}
impl DistinctArrayAgg {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
input_data_type: DataType,
nullable: bool,
) -> Self {
let name = name.into();
Self {
name,
input_data_type,
expr,
nullable,
}
}
}
impl AggregateExpr for DistinctArrayAgg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new_list(
&self.name,
Field::new("item", self.input_data_type.clone(), self.nullable),
false,
))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(DistinctArrayAggAccumulator::try_new(
&self.input_data_type,
self.nullable,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![Field::new_list(
format_state_name(&self.name, "distinct_array_agg"),
Field::new("item", self.input_data_type.clone(), self.nullable),
false,
)])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![Arc::clone(&self.expr)]
}
fn name(&self) -> &str {
&self.name
}
}
impl PartialEq<dyn Any> for DistinctArrayAgg {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.input_data_type == x.input_data_type
&& self.expr.eq(&x.expr)
})
.unwrap_or(false)
}
}
#[derive(Debug)]
struct DistinctArrayAggAccumulator {
values: HashSet<ScalarValue>,
datatype: DataType,
nullable: bool,
}
impl DistinctArrayAggAccumulator {
pub fn try_new(datatype: &DataType, nullable: bool) -> Result<Self> {
Ok(Self {
values: HashSet::new(),
datatype: datatype.clone(),
nullable,
})
}
}
impl Accumulator for DistinctArrayAggAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![self.evaluate()?])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
assert_eq!(values.len(), 1, "batch input should only include 1 column!");
let array = &values[0];
for i in 0..array.len() {
let scalar = ScalarValue::try_from_array(&array, i)?;
self.values.insert(scalar);
}
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
states[0]
.as_list::<i32>()
.iter()
.flatten()
.try_for_each(|val| self.update_batch(&[val]))
}
fn evaluate(&mut self) -> Result<ScalarValue> {
let values: Vec<ScalarValue> = self.values.iter().cloned().collect();
let arr = ScalarValue::new_list(&values, &self.datatype, self.nullable);
Ok(ScalarValue::List(arr))
}
fn size(&self) -> usize {
std::mem::size_of_val(self) + ScalarValue::size_of_hashset(&self.values)
- std::mem::size_of_val(&self.values)
+ self.datatype.size()
- std::mem::size_of_val(&self.datatype)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use crate::expressions::tests::aggregate;
use arrow::array::Int32Array;
use arrow::datatypes::Schema;
use arrow::record_batch::RecordBatch;
use arrow_array::types::Int32Type;
use arrow_array::Array;
use arrow_array::ListArray;
use arrow_buffer::OffsetBuffer;
use datafusion_common::internal_err;
fn compare_list_contents(
expected: Vec<ScalarValue>,
actual: ScalarValue,
) -> Result<()> {
let array = actual.to_array()?;
let list_array = array.as_list::<i32>();
let inner_array = list_array.value(0);
let mut actual_scalars = vec![];
for index in 0..inner_array.len() {
let sv = ScalarValue::try_from_array(&inner_array, index)?;
actual_scalars.push(sv);
}
if actual_scalars.len() != expected.len() {
return internal_err!(
"Expected and actual list lengths differ: expected={}, actual={}",
expected.len(),
actual_scalars.len()
);
}
let mut seen = vec![false; expected.len()];
for v in expected {
let mut found = false;
for (i, sv) in actual_scalars.iter().enumerate() {
if sv == &v {
seen[i] = true;
found = true;
break;
}
}
if !found {
return internal_err!(
"Expected value {:?} not found in actual values {:?}",
v,
actual_scalars
);
}
}
Ok(())
}
fn check_distinct_array_agg(
input: ArrayRef,
expected: Vec<ScalarValue>,
datatype: DataType,
) -> Result<()> {
let schema = Schema::new(vec![Field::new("a", datatype.clone(), false)]);
let batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![input])?;
let agg = Arc::new(DistinctArrayAgg::new(
col("a", &schema)?,
"bla".to_string(),
datatype,
true,
));
let actual = aggregate(&batch, agg)?;
compare_list_contents(expected, actual)
}
fn check_merge_distinct_array_agg(
input1: ArrayRef,
input2: ArrayRef,
expected: Vec<ScalarValue>,
datatype: DataType,
) -> Result<()> {
let schema = Schema::new(vec![Field::new("a", datatype.clone(), false)]);
let agg = Arc::new(DistinctArrayAgg::new(
col("a", &schema)?,
"bla".to_string(),
datatype,
true,
));
let mut accum1 = agg.create_accumulator()?;
let mut accum2 = agg.create_accumulator()?;
accum1.update_batch(&[input1])?;
accum2.update_batch(&[input2])?;
let array = accum2.state()?[0].raw_data()?;
accum1.merge_batch(&[array])?;
let actual = accum1.evaluate()?;
compare_list_contents(expected, actual)
}
#[test]
fn distinct_array_agg_i32() -> Result<()> {
let col: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 7, 4, 5, 2]));
let expected = vec![
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(Some(4)),
ScalarValue::Int32(Some(5)),
ScalarValue::Int32(Some(7)),
];
check_distinct_array_agg(col, expected, DataType::Int32)
}
#[test]
fn merge_distinct_array_agg_i32() -> Result<()> {
let col1: ArrayRef = Arc::new(Int32Array::from(vec![1, 2, 7, 4, 5, 2]));
let col2: ArrayRef = Arc::new(Int32Array::from(vec![1, 3, 7, 8, 4]));
let expected = vec![
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(2)),
ScalarValue::Int32(Some(3)),
ScalarValue::Int32(Some(4)),
ScalarValue::Int32(Some(5)),
ScalarValue::Int32(Some(7)),
ScalarValue::Int32(Some(8)),
];
check_merge_distinct_array_agg(col1, col2, expected, DataType::Int32)
}
#[test]
fn distinct_array_agg_nested() -> Result<()> {
let a1 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(1),
Some(2),
Some(3),
])]);
let a2 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(4),
Some(5),
])]);
let l1 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([2]),
arrow::compute::concat(&[&a1, &a2]).unwrap(),
None,
);
let a1 =
ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(6)])]);
let a2 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(7),
Some(8),
])]);
let l2 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([2]),
arrow::compute::concat(&[&a1, &a2]).unwrap(),
None,
);
let a1 =
ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(9)])]);
let l3 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([1]),
Arc::new(a1),
None,
);
let l1 = ScalarValue::List(Arc::new(l1));
let l2 = ScalarValue::List(Arc::new(l2));
let l3 = ScalarValue::List(Arc::new(l3));
let array = ScalarValue::iter_to_array(vec![
l1.clone(),
l2.clone(),
l3.clone(),
l3.clone(),
l1.clone(),
])
.unwrap();
let expected = vec![l1, l2, l3];
check_distinct_array_agg(
array,
expected,
DataType::List(Arc::new(Field::new_list(
"item",
Field::new("item", DataType::Int32, true),
true,
))),
)
}
#[test]
fn merge_distinct_array_agg_nested() -> Result<()> {
let a1 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(1),
Some(2),
])]);
let a2 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(3),
Some(4),
])]);
let l1 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([2]),
arrow::compute::concat(&[&a1, &a2]).unwrap(),
None,
);
let a1 =
ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(5)])]);
let l2 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([1]),
Arc::new(a1),
None,
);
let a1 = ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![
Some(6),
Some(7),
])]);
let a2 =
ListArray::from_iter_primitive::<Int32Type, _, _>(vec![Some(vec![Some(8)])]);
let l3 = ListArray::new(
Arc::new(Field::new("item", a1.data_type().to_owned(), true)),
OffsetBuffer::from_lengths([2]),
arrow::compute::concat(&[&a1, &a2]).unwrap(),
None,
);
let l1 = ScalarValue::List(Arc::new(l1));
let l2 = ScalarValue::List(Arc::new(l2));
let l3 = ScalarValue::List(Arc::new(l3));
let input1 = ScalarValue::iter_to_array(vec![l1.clone(), l2.clone()]).unwrap();
let input2 = ScalarValue::iter_to_array(vec![l1.clone(), l3.clone()]).unwrap();
let expected = vec![l1, l2, l3];
check_merge_distinct_array_agg(input1, input2, expected, DataType::Int32)
}
}