1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Deprecated module. Add new feature in scalar_function.rs
//!
//! This module contains built-in functions' enumeration and metadata.
//!
//! Generally, a function has:
//! * a signature
//! * a return type, that is a function of the incoming argument's types
//! * the computation, that must accept each valid signature
//!
//! * Signature: see `Signature`
//! * Return type: a function `(arg_types) -> return_type`. E.g. for sqrt, ([f32]) -> f32, ([f64]) -> f64.
//!
//! This module also supports coercion to improve user experience: if
//! an argument i32 is passed to a function that supports f64, the
//! argument is automatically is coerced to f64.
use std::sync::Arc;
use arrow::array::{Array, ArrayRef};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::{ColumnarValue, ScalarFunctionImplementation};
pub use crate::scalar_function::create_physical_expr;
// For backward compatibility
pub use datafusion_expr::function::Hint;
#[deprecated(since = "36.0.0", note = "Use ColumarValue::values_to_arrays instead")]
pub fn columnar_values_to_array(args: &[ColumnarValue]) -> Result<Vec<ArrayRef>> {
ColumnarValue::values_to_arrays(args)
}
/// Decorates a function to handle [`ScalarValue`]s by converting them to arrays before calling the function
/// and vice-versa after evaluation.
/// Note that this function makes a scalar function with no arguments or all scalar inputs return a scalar.
/// That's said its output will be same for all input rows in a batch.
#[deprecated(
since = "36.0.0",
note = "Implement your function directly in terms of ColumnarValue or use `ScalarUDF` instead"
)]
pub fn make_scalar_function<F>(inner: F) -> ScalarFunctionImplementation
where
F: Fn(&[ArrayRef]) -> Result<ArrayRef> + Sync + Send + 'static,
{
make_scalar_function_inner(inner)
}
/// Internal implementation, see comments on `make_scalar_function` for caveats
pub(crate) fn make_scalar_function_inner<F>(inner: F) -> ScalarFunctionImplementation
where
F: Fn(&[ArrayRef]) -> Result<ArrayRef> + Sync + Send + 'static,
{
make_scalar_function_with_hints(inner, vec![])
}
/// Just like [`make_scalar_function`], decorates the given function to handle both [`ScalarValue`]s and arrays.
/// Additionally can receive a `hints` vector which can be used to control the output arrays when generating them
/// from [`ScalarValue`]s.
///
/// Each element of the `hints` vector gets mapped to the corresponding argument of the function. The number of hints
/// can be less or greater than the number of arguments (for functions with variable number of arguments). Each unmapped
/// argument will assume the default hint (for padding, it is [`Hint::Pad`]).
pub(crate) fn make_scalar_function_with_hints<F>(
inner: F,
hints: Vec<Hint>,
) -> ScalarFunctionImplementation
where
F: Fn(&[ArrayRef]) -> Result<ArrayRef> + Sync + Send + 'static,
{
Arc::new(move |args: &[ColumnarValue]| {
// first, identify if any of the arguments is an Array. If yes, store its `len`,
// as any scalar will need to be converted to an array of len `len`.
let len = args
.iter()
.fold(Option::<usize>::None, |acc, arg| match arg {
ColumnarValue::Scalar(_) => acc,
ColumnarValue::Array(a) => Some(a.len()),
});
let is_scalar = len.is_none();
let inferred_length = len.unwrap_or(1);
let args = args
.iter()
.zip(hints.iter().chain(std::iter::repeat(&Hint::Pad)))
.map(|(arg, hint)| {
// Decide on the length to expand this scalar to depending
// on the given hints.
let expansion_len = match hint {
Hint::AcceptsSingular => 1,
Hint::Pad => inferred_length,
};
arg.clone().into_array(expansion_len)
})
.collect::<Result<Vec<_>>>()?;
let result = (inner)(&args);
if is_scalar {
// If all inputs are scalar, keeps output as scalar
let result = result.and_then(|arr| ScalarValue::try_from_array(&arr, 0));
result.map(ColumnarValue::Scalar)
} else {
result.map(ColumnarValue::Array)
}
})
}