1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical exec for aggregate window function expressions.

use std::any::Any;
use std::ops::Range;
use std::sync::Arc;

use arrow::array::Array;
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};

use datafusion_common::ScalarValue;
use datafusion_common::{DataFusionError, Result};
use datafusion_expr::{Accumulator, WindowFrame};

use crate::window::window_expr::AggregateWindowExpr;
use crate::window::{
    PartitionBatches, PartitionWindowAggStates, SlidingAggregateWindowExpr, WindowExpr,
};
use crate::{
    expressions::PhysicalSortExpr, reverse_order_bys, AggregateExpr, PhysicalExpr,
};

/// A window expr that takes the form of an aggregate function.
///
/// See comments on [`WindowExpr`] for more details.
#[derive(Debug)]
pub struct PlainAggregateWindowExpr {
    aggregate: Arc<dyn AggregateExpr>,
    partition_by: Vec<Arc<dyn PhysicalExpr>>,
    order_by: Vec<PhysicalSortExpr>,
    window_frame: Arc<WindowFrame>,
}

impl PlainAggregateWindowExpr {
    /// Create a new aggregate window function expression
    pub fn new(
        aggregate: Arc<dyn AggregateExpr>,
        partition_by: &[Arc<dyn PhysicalExpr>],
        order_by: &[PhysicalSortExpr],
        window_frame: Arc<WindowFrame>,
    ) -> Self {
        Self {
            aggregate,
            partition_by: partition_by.to_vec(),
            order_by: order_by.to_vec(),
            window_frame,
        }
    }

    /// Get aggregate expr of AggregateWindowExpr
    pub fn get_aggregate_expr(&self) -> &Arc<dyn AggregateExpr> {
        &self.aggregate
    }
}

/// peer based evaluation based on the fact that batch is pre-sorted given the sort columns
/// and then per partition point we'll evaluate the peer group (e.g. SUM or MAX gives the same
/// results for peers) and concatenate the results.
impl WindowExpr for PlainAggregateWindowExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        self.aggregate.field()
    }

    fn name(&self) -> &str {
        self.aggregate.name()
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.aggregate.expressions()
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        self.aggregate_evaluate(batch)
    }

    fn evaluate_stateful(
        &self,
        partition_batches: &PartitionBatches,
        window_agg_state: &mut PartitionWindowAggStates,
    ) -> Result<()> {
        self.aggregate_evaluate_stateful(partition_batches, window_agg_state)?;

        // Update window frame range for each partition. As we know that
        // non-sliding aggregations will never call `retract_batch`, this value
        // can safely increase, and we can remove "old" parts of the state.
        // This enables us to run queries involving UNBOUNDED PRECEDING frames
        // using bounded memory for suitable aggregations.
        for partition_row in partition_batches.keys() {
            let window_state =
                window_agg_state.get_mut(partition_row).ok_or_else(|| {
                    DataFusionError::Execution("Cannot find state".to_string())
                })?;
            let state = &mut window_state.state;
            if self.window_frame.start_bound.is_unbounded() {
                state.window_frame_range.start =
                    state.window_frame_range.end.saturating_sub(1);
            }
        }
        Ok(())
    }

    fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.partition_by
    }

    fn order_by(&self) -> &[PhysicalSortExpr] {
        &self.order_by
    }

    fn get_window_frame(&self) -> &Arc<WindowFrame> {
        &self.window_frame
    }

    fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>> {
        self.aggregate.reverse_expr().map(|reverse_expr| {
            let reverse_window_frame = self.window_frame.reverse();
            if reverse_window_frame.start_bound.is_unbounded() {
                Arc::new(PlainAggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            } else {
                Arc::new(SlidingAggregateWindowExpr::new(
                    reverse_expr,
                    &self.partition_by.clone(),
                    &reverse_order_bys(&self.order_by),
                    Arc::new(self.window_frame.reverse()),
                )) as _
            }
        })
    }

    fn uses_bounded_memory(&self) -> bool {
        !self.window_frame.end_bound.is_unbounded()
    }
}

impl AggregateWindowExpr for PlainAggregateWindowExpr {
    fn get_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        self.aggregate.create_accumulator()
    }

    /// For a given range, calculate accumulation result inside the range on
    /// `value_slice` and update accumulator state.
    // We assume that `cur_range` contains `last_range` and their start points
    // are same. In summary if `last_range` is `Range{start: a,end: b}` and
    // `cur_range` is `Range{start: a1, end: b1}`, it is guaranteed that a1=a and b1>=b.
    fn get_aggregate_result_inside_range(
        &self,
        last_range: &Range<usize>,
        cur_range: &Range<usize>,
        value_slice: &[ArrayRef],
        accumulator: &mut Box<dyn Accumulator>,
    ) -> Result<ScalarValue> {
        let value = if cur_range.start == cur_range.end {
            // We produce None if the window is empty.
            ScalarValue::try_from(self.aggregate.field()?.data_type())?
        } else {
            // Accumulate any new rows that have entered the window:
            let update_bound = cur_range.end - last_range.end;
            // A non-sliding aggregation only processes new data, it never
            // deals with expiring data as its starting point is always the
            // same point (i.e. the beginning of the table/frame). Hence, we
            // do not call `retract_batch`.
            if update_bound > 0 {
                let update: Vec<ArrayRef> = value_slice
                    .iter()
                    .map(|v| v.slice(last_range.end, update_bound))
                    .collect();
                accumulator.update_batch(&update)?
            }
            accumulator.evaluate()?
        };
        Ok(value)
    }
}